• Title/Summary/Keyword: field-induced charged device model(FCDM)

Search Result 3, Processing Time 0.015 seconds

An Analysis of Damage Mechanism of Semiconductor Devices by ESD Using Field-induced Charged Device Model (유도대전소자모델(FCDM)을 이용한 ESD에 의한 반도체소자의 손상 메커니즘 해석)

  • 김두현;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.57-62
    • /
    • 2001
  • In order to analyze the mechanism of semiconductor device damages by ESD, this paper adopts a new charged-device model(CDM), field-induced charged nudel(FCDM), simulator that is suitable for rapid routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. The high voltage applied to the device under test is raised by the fie]d of non-contacting electrodes in the FCDM simulator. which avoids premature device stressing and permits a faster test cycle. Discharge current md time are measured and calculated The FCDM simulator places the device at a huh voltage without transferring charge to it, by using a non-contacting electrode. The only charge transfer in the FCMD simulator happens during the discharge. This paper examine the field charging mechanism, measure device thresholds, and analyze failure modes. The FCDM simulator provides a Int and inexpensive test that faithfully represents factory ESD hazards. The damaged devices obtained in the simulator are analyzed and evaluated by SEM Also the results in this paper can be used for to prevent semiconductor devices from ESD hazards.

  • PDF

Experimental Investigation of the Electrostatic Discharge(ESD) Damage in Packaged Semiconductor Devices (패키지 반도체소자의 ESD 손상에 대한 실험적 연구)

  • Kim, Sang-Ryull;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipments need to be more alert to the problem of electrostatic discharges(ESD). In order to analyze damage characteristics of semiconductor device damaged by ESD, this study adopts a new charged-device model(CDM), field-induced charged model(FCDM) simulator that is suitable for rapid, routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. High voltage applied to the device under test is raised by the field of non-contacting electrodes in the FCDM simulator, which avoids premature device stressing and permits a faster test cycle. Discharge current and time are measured and calculated. The characteristics of electrostatic attenuation of domestic semiconductor devices are investigated to evaluate the ESD phenomena in the semiconductors. Also, the field charging mechanism, the device thresholds and failure modes are investigated and analyzed. The damaged devices obtained in the simulator are analyzed and evaluated by SEM. The results obtained in this paper can be used to prevent semiconductor devices form ESD hazards and be a foundation of research area and industry relevant to ESD phenomena.

Damage and Failure Characteristics of Semiconductor Devices by ESD (ESD에 의한 반도체소자의 손상특성)

  • 김두현;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.62-68
    • /
    • 2000
  • Static electricity in electronics manufacturing plants causes the economic loss, yet it is one of the least understood and least recognized effects haunting the industry today. Today's challenge in semiconductor devices is to achieve greater functional density pattern and to miniaturize electronic systems of being more fragile by electrostatic discharges(ESD) phenomena. As the use of automatic handling equipment for static-sensitive semiconductor components is rapidly increased, most manufacturers need to be more alert to the problem of ESD. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the static-sensitive devices. To evaluate the ESD hazards by charged human body and devices, in this paper, characteristics of electrostatic attenuation in domestic semiconductor devices is investigated and the voltage to cause electronic component failures is investigated by field-induced charged device model(FCDM) tester. The FCDM simulator provides a fast and inexpensive test that faithfully represents ESD hazards in plants. Also the results obtained in this paper can be used for the prevention of semiconductor failure from ESD hazards.

  • PDF