• Title/Summary/Keyword: field-cultivated pepper

Search Result 35, Processing Time 0.02 seconds

Distribution of Habitats and Ecology of Weedy Melons (Cucumis melo var. agrestis Naud.) in Korea (우리나라 야생잡초 참외의 자생지 분포지역 및 생태)

  • Lee, Woo-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.652-655
    • /
    • 2013
  • Natural habitats of weedy melons were distributed on the islands along and on the west and south coasts of Korean peninsula including Boryeong, Seosan (Taean), Seocheon, Okgu, Buan, Gochang, Yeonggwang, Muan, Shinan, Haenam, Jindo, Wando, Goheung, Yeocheon, Hadong, Namhae, Goseong, Tongyeong, Geoje, and Jeju islands including Jeju city, Bukjeju-gun and Nam Jeju-gun. Weedy melons were found growing wildly in or around the cultivated lands in these regions. Natural habitats of weedy melons were in and around the cultivated lands. Weedy melon plants were found most often in soybean fields, followed by fields of mungbean, sweet potato, pepper, sesame, cotton, and peanuts. The plants were also found growing wild in foxtail millet fields, rice paddy levees along the streams, upland field edges, watermelon fields, corn fields, vegetable gardens near farmhouse, orange fields, compost piles, fallow fields, roadside and home gardens. They inhabited in sunny and a little dry spaces in relatively low-height crop plant fields in general. The time of fruit maturity was from early July to late October with the most frequency in September according to post survey answer. Fruits dropped off from the fruit stalk when matured. This phenomenon was thought beneficial for perpetuation in the wild. The fruits were being used commonly for food and toys for children. It was thought that weedy melons were perpetuating through the cycle of human and animal feeding of the fruits, human and animal droppings, often mixed in compost, and application of the compost to crop fields by human.

Identification of Quantitative Trait Loci Associated with Anthracnose Resistance in Chili Pepper (Capsicum spp.) (고추 탄저병 저항성 관련 양적형질 유전자좌 분석)

  • Kim, Su;Kim, Ki-Taek;Kim, Dong-Hwi;Yang, Eun-Young;Cho, Myeong-Cheoul;Jamal, Arshad;Chae, Young;Pae, Do-Ham;Oh, Dae-Geun;Hwang, Ju-Kwang
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1014-1024
    • /
    • 2010
  • Pepper ($Capsicum$ spp.) anthracnose caused by $Colletotrichum$ $acutatum$ is a destructive disease susceptible to areas where chili peppers are grown. $Capsicum$ $baccatum$ var. $pendulum$ (Cbp) is resistant to anthracnose and has actively been used for interspecific hybridization for the introgression of resistance gene(s) into cultivated chili peppers. The goals of this study were to determine the inheritance of resistance to anthracnose within $Capsicum$ $baccatum$ and to map quantitative trait loci (QTLs) for the anthracnose resistance. A genetic mapping population consisting of 126 $F_2$ plants derived from a cross between $Capsicum$ $baccatum$ var. $pendulum$ (resistant) and $Capsicum$ $baccatum$ 'Golden-aji' (susceptible) was used for linkage mapping. The linkage map was constructed with 52 SSRs, 175 AFLPs, and 100 SRAPs covering 1,896cM, with an average interval marker distance of 4.0cM. Based on this map, the number, location, and effect of QTLs for anthracnose resistance were studied using plants inoculated in the laboratory and field. A total of 19 quantitative trait loci (2 major QTLs and 16 minor QTLs) were detected. Two QTLs ($An8.1$, $An9.1$) showed 16.4% phenotypic variations for anthracnose resistance after wounding inoculation. In addition, five minor QTL loci ($An7.3$, $An7.4$, $An4.1$, $An3.1$, $An3.2$) showed a total of 60.73% phenotypic variations of anthracnose resistance in the field test. Several significant QTLs were also detected and their reproducibility was confirmed under different inoculation conditions. These QTLs are now being confirmed with different breeding populations. Markers tightly linked to the QTLs that are reliable under different environmental conditions will help to determine the success of marker-assisted selection for anthracnose -resistant breeding programs in chili pepper.

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF

Method of Environmental-Friendly Fertilization for Rice Cultivation after Vegetable Copping in Green House Soil (시설재배 후작 벼 재배를 위한 친환경적 시비 기술)

  • Jeon, Weon-Tai;Lee, Jae-Sang;Park, Ki-Do;Park, Chang-Yeong;Roh, Sug-Won;Yang, Won-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Green house soils have been intensively cultivated with excessive application of compost and chemical fertilizer for vegetable growth. The objective of this study was to establish the reasonable fertilizer application system for rice cultivation in green house soil. Field experiment was carried out with rice cv. Geumo-byeo 1 in Jisan series soil (fine loamy, mixed, mesic family of Fluventic Haplaquepts) that was previously cropped with green pepper (Capsicum annuum L.) for the last 3 years. Treatment consisted of conventional fertilization $(N-P_2O_5-K_2O=11-4.5-5.7kg\;10a^{-1})$, no basal fertilization, 50% reduction of basal fertilization no top dressing, bulk blending fertilizer, and no fertilizer. The value of pH, available phosphate, and exchangeable potassium after experiment was lower than those before experiment while organic matter content was not difference in all treatment. The value of salt elusion was the highest in no basal fertilization plot. The amount of $NH_4-N$ in soil was higher in growth stage of rice as fertilizer amount increased in 1998. The changes of plant height and tiller were higher as fertilizer amount increased. Thousand-grain weight as yield component was higher in no basal fertilization plot all the year because of decreasing panicle. There was no significant difference in rice yield between treatments in 1998. However, conventional fertilization resulted in significantly increased rice yield in 1999. Nitrogen use efficiency was the highest in no basal fertilization plot in 1998 and in conventional fertilization plot in 1998. Our results suggest that no basal fertilization be best to increase salt elusion with slightly increased yield in first year for rice cropping after vegetable harvesting, which method improves fertilization efficiency. However, conventional fertilization was good for second rice cropping after vegetable harvesting in greenhouse.