• Title/Summary/Keyword: field water content

Search Result 641, Processing Time 0.026 seconds

Evaluation of $N_2O$ Emissions with Changes of Soil Temperature, Soil Water Content and Mineral N in Red Pepper and Soybean Field (고추와 콩 재배에서 토양온도, 토양수분과 무기태질소 변화에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.880-885
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions at different soil water content, soil temperature, and mineral N conditions in a upland cultivating red pepper and soy bean. The results were as follows: 1) There were significant correlation between amount of $N_2O$ emissions and soil temperature, soil water content and mineral N conditions showed $0.528^{**}$, $0.790^{***}$ and $0.937^{***}$ in red pepper field and $0.658^{***}$, $0.710^{***}$ and $0.865^{***}$ in soybean field, respectively. 2) From the contribution rate analysis as to contribution factors for $N_2O$ emission, it appeared that contribution rate was in the order of mineral N (71.9%), soil moisture content (23.6%), and soil temperature (4.5%) in pepper field and mineral N (65.5%), soil moisture contents (19.2%), and soil temperature (15.2%) in soybean field.

A Laboratory Test for Detecting the Infiltrating Characteristics of Unsaturated Soil in Soil Slide (흙사면 절개지 불포화토의 침투거동 특성에 관한 연구)

  • Kim Man-Il;Chae Byung-Gon;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.487-494
    • /
    • 2005
  • In order to estimated a reason of soil slope failure new measurement technology is demanded to measure a variation of volumetric water content which is a key physical parameter for understanding the slope failure in the field. In this study a laboratory soil tank test were conducted to use RDB and ADR measurement probes for measuring the variation of volumetric water content. These experiments were compared with two physical parameters as volumetric water content and pressure water head which are estimated to the compacted weathered granite soil under the artificial rainfall, 7.5mm/hour, in the whole of two stages. From the results the variation of volumetric water content and pressure water head is represented to nearly similar travel time.

Consolidation characteristics of slurry by Rowe Cell (Rowe Cell을 이용한 슬러리점토의 압밀특성)

  • 정규향;조진구;주재우;백원진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.875-883
    • /
    • 2003
  • Slurry clay has much higher water content than liquid limit of clay and even if small loads apply, it suffers a great settlement. Accordingly it is very difficult to perform a general consolidation test about slurry clay because of high water content. In this study consolidation tests have been performed successfully using Rowe Cell Tester about 1 remolding clay and 3 slurry clays with a water content of 100%, 133% and 150%. From the test results compression index characteristics, secondary compression index characteristics and consolidation coefficient characteristics have been investigated about slurry clay and remolding clay. Also two kinds of theory, by Terzaghi theory and by Mikasa theory, has been used to calculate consolidation coefficients. Compared to the calculation results, they had a similar value of consolidation coefficient. However if Mikasa theory is applied in the field design, the period which reach to the required consolidation degree will be much reduced compared to the period by Terzaghi theory because the time coefficient T$\_$v/ by Mikasa theory is far smaller than T$\_$v/ by Terzaghi theory.

  • PDF

Analysis of Soil Ionization Behaviors under Impulse Currents

  • Lee, Bok-Hee;Park, Geon-Hun;Kim, Hoe-Gu;Lee, Kyu-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • This paper presents the characteristics of soil ionization for different water contents, and the parameters associated with the dynamic properties of a simple model grounding system subject to lightning impulse currents. The laboratory experiments for this study were carried out based on factors affecting the soil resistivities. The soil resistivities are adjusted with water contents in the range from 2 to 8% by weight. A test cell with a spherical electrode buried in the middle of the hemispherical container was used. As a result, the electric field intensity $E_c$ initiating ionization is decreased with the reduction of soil resistivities. Also, as the water content increased, the pre-ionization resistance $R_1$ and the post-ionization resistance $R_2$ became lower with increasing current amplitude. The time-lag to ionization $t_1$ and the time-lag to the second current peak $t_2$ at high applied voltages were significantly shorter than those of low applied voltages. It was found that the soil ionization behaviors are highly dependent on the water content and the applied voltage amplitude.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Effect of Temperature and Water Content of Soil on Creeping Bentgrass(Agrostis palustris Huds) Growth (토양의 온도와 수분이 크리핑 벤트그래스(Agrostis palustris Huds) 생육에 미치는 영향)

  • Lim, Seung-Hyun;Jeong, Jun-Ki;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2009
  • The high temperature and water content in soil profile probably affect the physiological disorder especially on cool-season turfgrasses in warm and humid weather of Korean summer. The purpose of this research was to analyze the effect of soil temperature and water content on the growth and stress response of creeping bentgrass(Agrostis palustris Huds.) under a humid and warm temperature. USGA(United State of Golf Association) green profile in laboratory test, Daily temperature changes were tested under a dried sand, 70% water content of field capacity, and saturated condition at $34^{\circ}C$ of the USGA green in lab. In this test, the dried sand reached to $80^{\circ}C$, however, the surface temperature decrease of $10^{\circ}C$ on the saturated condition. In the thermal properties test in field, thermal conductivity, thermal diffusivity, and soil temperature were increased followed by irrigation practise. In the water-deficient condition, the highest soil temperature was reached temporally right after irrigation, however, the excessive soil water content higher than field water holding capacity showed the highest soil temperature after a while. This result indicated that a heat damage to root system was caused from the thermal conductivity of a high surface soil temperature. The excessive irrigation when a high turf surface temperature should occur a negative result on tufgrass growth, moreover, it would be fatal to root growth of creeping bentgrass, especially when associated with a poor draining system on USGA sand green. Overall, this study shows that high soil temperature with water-excessive condition negatively affects on cool-season grass during the summer season, suggesting that excessive irrigation, over 70% field capacity of soil condition, does not help to reduce soil temperature for summer season in Korea. In the study that cool-season grass were treated with different water content of soil, The soil had higher temperature and more water holding capacity when treatment rate of soil conditioner was increased. The best growth at the normal water condition and the worst state of growth at thee water-excessive condition were observed.

Available Soil Water for Textural Class of Korean Soils (우리나라 토양(土壤)의 토성별(土性別) 유효수분(有效水分))

  • Jung, Sug-Jae;Moon, Joon;Kim, Tai-Soon;Hyeon, Geun-Soo;Park, Chang-Seo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.167-172
    • /
    • 1990
  • Some of soil properties already known were selected for the determination of their effect on soil moisture characteristics. Total number of 2,808 representative samples from all over Korea with the exception of Jeju Island were investigated. 1. Available water contents were 4.7 for S, 7.7 for LS, 13.2 for SL, 17.7 for L, 19.2 for SiL, 15.9 for CL, 14.5 for SCL, 18.7 for SiCL, 17.3 for SiC, and 14.9% for C, respectively. 2. Simple regression analysis showed that field capacity and available water content were most strongly associated with sand content in coarse-textured soils, and with organic matter content in fine-textured soils, whereas permanent wilting point was closely associated with clay content. 3. Available water was strongly associated with silt content and also significantly with field capacity, but either not at all or negatively with permanent wilting point. 4. Prediction equations for available water and field capacity were drown out from known soil properties, which can be used for each textural class.

  • PDF

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Environmental Contamination of the Abandoned Chonju Il Mine in the Chonbuk Area (전주 일광산 주변의 환경 오염에 관한 연구 -겨울철 중금속오염을 중심으로-)

  • 조규성;정덕호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.623-631
    • /
    • 1998
  • Pyrite contained in wasted ore dumps induces a strong acid environment when it contacts oxygenated rainfall. Present research was designed to evaluate the pollution of an area that is supposedly contaminated by pyrite of ore wasted dumps form in Chonju Il Mine. Measured are the pH and selected heavy metal elements in the supposedly polluted hydrologic system. The samples include three types : those collected from the stream waters; those from the stream sediments; and those from the rice field soil scattered over the area. The dispersion path of the pollution source was also traced. The pH of the hydrologic system ranged from 3.44 to 5.46, which clearly indicates that the area is on the acid environment. The pH tends to rise as the distance from the minehead increases. The content of heavy metal elements dissolved in the stream water varies as follows; Mn=69.73~1.99ppm, Cd=0.02~0.03ppm, Zn=0.77~1.18ppm, Cu=0.04~0.13ppm, Pb=0.22~0.32ppm. The stream water in this state may induce serious heavy metal pollution to the agricultural land and the water for human life especially in the villages down the stream. The content of heavy metal elements dissolved in the stream sediment varies as follows; Mn=245.0~4685.0ppm, Cd=10.0~15.0ppm, Zn=105.0~210.0ppm, Cu=65.0~155.0ppm, Pb=90.0~150.0ppm. The content of heavy metal elements dissolved in the rice field soil varies as follows; Mn=185.0~260.0ppm, Cd=10.0~15.0ppm, Zn=135.0~180.0ppm, Cu=65.0~90.0ppm, Pb=100.0~130.0ppm. The pollution index in the stream sediment and the rice field sell is 1.36~2.03, which shows that pollution had already begun all over the area where the samples were collected.

  • PDF