Parkinson's disease is a degenerative neurological disease that affects even basic daily life movements due to impairment of body function caused by a lack of dopamine, which is charge of the body movement. Presently, it is hard to cure Parkinson's disease entirely with medical technology, so movement therapy as a solution to delay and prevent disease is getting more attention. Therefore, this study aims at desiging and disseminating a body movement program that concentrates on individual self-care and balacing the state of body and mind by applying the Feldenkrais Method® to patients with Parkinson's disease. The Feldenkrais Method® is a mind-body perceptual learning method using body movements. It is a methodology that re-educates the nervous system by connecting the brain and behavior as a function of neuroplasticity. In this study, the body movement program developed and verified by the researcher was modified and supplemented with a focus on the self-awareness of the Feldenkrais Method®. A 24-session physical exercise program was composed of 5 stages to improve the self-management ability of patients with Parkinson's disease. The stages include self-awareness, self-observation, self-organization, self-control, and self-care. The overall changes recognize one's condition and improve one's ability to detect modifications in the internal sense and external environment. In conclusion, the body movement program improves the body movement program improves mental and physical functions and self-care for Parkinson's disease patients through the Feldenkrais method. The availability of the program's on-site applicability remains a follow-up task. Furthermore, it is necessary to establish a systematic structure to spread it more widely through convergent cooperation with the scientific field applied with metaverse as a reference for the wellness of the elderly.
Innovation and change are occurring rapidly in the agriculture and livestock industry, and new technologies such as smart bams are being introduced, and data that can be used to control equipment is being collected by utilizing various sensors. However, there are various challenges in the operation of bams, and virtual sensor technology is needed to solve these challenges. In this paper, we define various data items and sensor data types used in livestock farms, study cases that utilize virtual sensors in other fields, and implement and design a virtual sensor system for the final smart livestock farm. MBE and EVRMSE were used to evaluate the finalized system and analyze performance indicators. As a result of collecting and managing data using virtual sensors, there was no obvious difference in data values from physical sensors, showing satisfactory results. By utilizing the virtual sensor system in smart livestock farms, innovation and efficiency improvement can be expected in various areas such as livestock operation and livestock health status monitoring. This paper proposes an innovative method of data collection and management by utilizing virtual sensor technology in the field of smart livestock, and has obtained important results in verifying its performance. As a future research task, we would like to explore the connection of digital livestock using virtual sensors.
In In the era of digital transition, AI-based personalized services are emerging in the field of education. This research aims to examine the development strategies for implementing AI-based learning services in school. Focusing on AI-based math learning service "Math Cell" developed by i-Scream Edu, this study surveyed the functional requirements from the perspective of an educator. The results were analyzed for importance and suitability using IPA, and expert opinions were surveyed to explore specific development directions for the service. Consequently, importance in all areas such as diagnosis, learning, evaluation, and management averaged 4.82 and performance averaged 4.56, showing excellent results in most questions, and in particular, importance was higher than performance. Among certain detailed functions, concept learning, customized task presentation, evaluation result analysis function, dashboard-related functions, and learning materials in the dashboard were not intuitive for students to understand and had to be supplemented. This study provides meaningful insights by summarizing expert opinions on AI-based personalized mathematics learning services, thereby contributing to the exploration of the development strategies for "Math Cell".
Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
Journal of Internet of Things and Convergence
/
v.9
no.6
/
pp.93-98
/
2023
In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.
KIPS Transactions on Software and Data Engineering
/
v.12
no.10
/
pp.431-436
/
2023
Recently the incorporation of artificial intelligence approaches in the field of software engineering has been one of the big topics. In the world, there are actively studying in two directions: 1) software engineering for artificial intelligence and 2) artificial intelligence for software engineering. We attempt to apply artificial intelligence to software engineering to identify and refactor bad code module areas. To learn the patterns of bad code elements well, we must have many datasets with bad code elements labeled correctly for artificial intelligence in this task. The current problems have insufficient datasets for learning and can not guarantee the accuracy of the datasets that we collected. To solve this problem, when collecting code data, bad code data is collected only for code module areas with high-complexity, not the entire code. We propose a method for exploring common weakness enumeration by learning the collected dataset based on transfer learning of the CodeBERT model. The CodeBERT model learns the corresponding dataset more about common weakness patterns in code. With this approach, we expect to identify common weakness patterns more accurately better than one in traditional software engineering.
Woongil Park;Eunbi Cho;Jeong-Hyeon Chang;Joo-chang Kim
Journal of Internet Computing and Services
/
v.25
no.1
/
pp.91-98
/
2024
With the advancement of ICT (Information and Communication Technology), searching for judgments through the internet has become increasingly convenient. However, predicting sentencing based on judgments remains a challenging task for individuals. This is because sentencing involves a complex process of applying aggravating and mitigating factors within the framework of legal provisions, and it often depends on the subjective judgment of the judge. Therefore, this research aimed to develop a model for predicting sentencing using artificial intelligence by focusing on structuring the data from judgments, making it suitable for AI applications. Through theoretical and statistical analysis of previous studies, we identified variables with high explanatory power for predicting sentencing. Additionally, by analyzing 50 legal judgments related to serious crimes that are publicly available, we presented a framework for extracting essential information from judgments. This framework encompasses basic case information, sentencing details, reasons for sentencing, the reasons for the determination of the sentence, as well as information about offenders, victims, and accomplices evident within the specific content of the judgments. This research is expected to contribute to the development of artificial intelligence technologies in the field of law in the future.
Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data
Lee, Jin Gang;Song, Bohyeon;Kim, Dain;Choi, Jaehyun
Journal of the Korea Institute of Building Construction
/
v.24
no.1
/
pp.145-156
/
2024
In an era where construction projects are becoming increasingly large and complex, the Korean construction industry faces the challenge of implementing systematic and cohesive schedule management practices. This study initially delineates the concept of schedule management capabilities, systematically categorizing them into five distinct domains: law and regulations, requirements of project owners, capabilities of professionals and organizations, task capability, and the adoption of smart construction technologies for schedule management. Through a survey targeting industry professionals, this research assesses the perceived importance and the actual proficiency level in schedule management across these categories, employing an Importance Performance Analysis(IPA) to scrutinize these capabilities. The findings underscore the acknowledged significance of diverse aspects of schedule management, yet reveal discrepancies between the current proficiency levels and their perceived importance, pinpointing areas necessitating enhancement. Critical improvement needs identified encompass the planning of budgets for schedule management, development of regulations for assessing construction periods, deployment of specialized on-site staff for schedule management, and investment in advanced schedule management software solutions. Consequently, this study offers a nuanced analysis and strategic insights for enhancing schedule management practices, aiming to facilitate their effective implementation in the field.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.18
no.6
/
pp.41-55
/
2023
In order to secure sustainable competitiveness of startups, business model innovation is an important task to achieve competitive advantage by transforming the various elements that make up the business model. This study conducted a multi-case analysis study on leading smart farm companies around the world using an analysis framework based on business model theory. Through this, we sought to identify business model types and their constituent elements. For this, 19 companies were selected from the list of top 10 investment startups of the year for the past three years published by Agfunder, a global investment research company specializing in AgTech. Then data collection and analysis of the company cases were conducted according to the case study protocol. As a result of the study, the business model types were analyzed into four types: large-scale centralized production model, medium-to-large local distributed production model, small-scale hyperlocal modular FaaS model, and small-scale hyperlocal turnkey solution supply model. A comparative analysis was conducted on five business model components for each type, and strategic implications were derived through this. This study is expected to contribute to improving the competitiveness of domestic smart farm startups and diversifying their strategies by identifying the business models of overseas leading companies in the smart farm field using an academic analysis framework.
This study aims to investigate the impact of hotel marketing agility on employee job crafting and service innovative behavior in the context of the uncertainties faced by the Korean hotel industry amidst a rapidly changing business environment. In the post-COVID era, hotel companies need to quickly detect market trends and respond flexibly to secure a competitive advantage and promote sustainable growth. Given the high proportion of face-to-face services in the hotel industry, marketing agility is emerging as a core competency to effectively cope with changing customer demands and market dynamics. However, an organization's agile marketing capabilities only take on true meaning when frontline employees voluntarily redesign their jobs and lead service process innovations. In this regard, job crafting, which refers to employees' active redefinition and modification of their job boundaries, can serve as a link between organizational agility and individual innovative behavior. By empirically analyzing the structural relationship between marketing agility, job crafting, and service innovative behavior in the hotel context, this study applies the concept of agility to the field of human resource management and provides new insights into the antecedents and outcomes of job crafting. The results show that hotel responsiveness has a significant positive impact on all three dimensions of job crafting. In the case of speed and flexibility, they had a significant positive effect on task and relational crafting, but the effect of speed on cognitive crafting was not significant. The implications of the study suggest that hotels' rapid decision-making and execution may actually constrain employees' cognitive crafting activities, such as reflecting on and reinterpreting the meaning and identity of their work. Furthermore, it is expected to provide meaningful insights for hotel managers facing environmental upheavals to seek practical measures to enhance agility and innovativeness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.