• Title/Summary/Keyword: field profile

Search Result 1,067, Processing Time 0.029 seconds

In-process Measurement of Surface Profile using CCD (CCD를 이용한 인프로세스 표면형상의 계측)

  • 이기용;강명창;김정석;조인순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.255-258
    • /
    • 1995
  • Surface profile is an important paramerer to evaluate accuracy of machined worpiece. It is necessary to acquire this data by in-process measurement. Recent researchers have introduced Machine Vision technique to achieve it. But it is difficult to apply it to industry field yet. In this study, in-process measuring system of surface profile is developed using CCD camera. The effect of illuminance according to incident angle is investigated and surface profile from surface tester and illuminance graph are compared experimentally.

  • PDF

Effects of axial external magnetic fields on plasma density on substrate in helical resonator plasma source (헬리칼 공명 플라즈마에서 축 방향의 외부 자장이 기판상의 플라즈마 밀도에 미치는 영향)

  • 김태현;태흥식;이용현;이호준;이정해;최경철
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.172-179
    • /
    • 1999
  • The axial distributions of plasma density in a helical resonator plasma with the external magnetic field have been measured using Langmuir probes. Net RF power is set to 200W and chamber pressure is varied from 0.4 mTorr to 100mTorr there are three kinds of eternal magnetic field structure applied on the helical resonator plasma. One is a uniform magnetic field, the second is a positive gradient magnetic field and the third is a negative gradient magnetic field. In the three magnetic field structures, the negative gradient magnetic field is found to show the highest increase in plasma density on the substrate compared with other magnetic structures. Plasma density profile in helical resonator is well consistent with electromagnetic field pattern obtained by computer simulation. It is also found that axial magnetic fields do not affect plasma density distribution in the plasma reactor region, but induce the increase of plasma density in the process chamber region. In order to avoid the nonuniformity of radial density profile, weak magnetic fields under 100G are applied.

  • PDF

Multicomponent analysis of metabolites of low volatility in biological fluids by field ionization mass spectrometry

  • Kim, Kyoung-Rae;Anbar, Michael
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1984
  • An improved mass spectrometric method for multicomponent analysis of metabolites in urine, well-suited for clinical biochemistry, is described. The method involves solvent elution of the metabolites from an adsorbent and the concentration of the eluate on a microadsorption column. This is administered by a direct inlet probe into the ionizing source of field ionization mass spectrometry (FIMS), which yield a molecular weight profile of the metabolites. The procedure provides rapidly (within one hour) reproducible profiles from a small volume of urine. The optimization of the sampling technique and the reproducibility are discussed.

  • PDF

Application and Analysis of Field Test and Geophysical Exploration for Dynamic Material Properties of Rockfill Dam (사력댐 동적물성 추정을 위한 현장조사기법 적용 및 분석)

  • Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.352-359
    • /
    • 2005
  • In this study, seismic refraction survey and MASW at dam crest and down-hole test and cross hole test in the boring holes located in dam crest through the core are performed to fin out dynamic material properties, are needed to evaluate dynamic safety of rockfill dam using dynamic analysis method. From the field test and geophysical exploration, applied such as above, p-wave and s-wave velocity profile of each layer of dam body. Dynamic material properties, such as elastic modulus, shear modulus, poissong's ration, are obtained from p-wave and s-wave velocity profile and density profile from formation density logging test.

  • PDF

FORMATION OF LINE PROFILE: SEI METHOD

  • CHOE SEUNG-URN;KANG MIN-YOUNG;KIM KYUNG-MEE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 1996
  • We have solved the radiative transfer problem using a Sobolev approximation with an escape probability method in case of the supersonic expansion of a stellar envelope to an ambient medium. The radiation from the expanding envelope turns out to produce a P-Cygni type profile. In order to investigate the morphology of the theoretical P-Cygni type profile, we have treated $V_\infty,\;V_{sto},\;\beta$ (parameters for the velocity field), it and E(parameter for collisional effect) as model parameters. We have investigated that the velocity field and the mass loss rate affect the shapes of the P-Cygni type profiles most effectively. The secondarily important factors are $V_\infty,\;V_{sto}$. The collisional effect tends to make the total flux increased but not so much in magnitude. We have infered some physical parameters of 68 Cyg, HD24912, and $\xi$ persei such as $V_\infty,\;M$ from the model calculation, which shows a good agreenment with the observational results.

  • PDF

Application of Mexican Hat Function to Wave Profile Detection (파형 분석을 위한 멕시코 모자 함수 응용)

  • 이희성;권순홍;이태일
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the results of wave profile detection from video image using the Mexican hat function. The Mexican hat function has been extensively used in the field of signal processing to detect discontinuity in the images. The analysis was done on the numerical image and video images of waves that were taken in the small wave flume. The results show that the Mexican hat function is an excellent tool for wave profile detection.

Hardcopy Proof Profiling for the Optimization Of Printing Process (인쇄 공정의 최적화를 위한 하드카피 프루프 프로파일링)

  • Cha, Jae-Young;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.25-42
    • /
    • 2010
  • One of the important roles of worflow is color management. In general, color management technique, which is called CMS(color management system), is a method to solve problems that show different characteristics of color regeneration in output devices, and the characteristics of output devices is created in data file called ICC(International Color Consortium) profile. In addition, ICC profile is used to manage color in workflow, and includes other functions, process management and printing quality management. In domestic printing market, workflow is in the pipeline at rapid speed along with CTP, and use of ICC profile required for color management is also in rapid progress. Therefore, this paper produced optimal ICC profile through experiment from the work of linearizing devices used in each field to color conversion work. Moreover, the paper confirmed how ICC profile will be used in printing field. In the profiling experiment based on hardcopy proofing, photographed copy and chrominance were compared by printing out in proof the image created through application and color conversion with the use of camera profile and proof profile produced in colorimetric method. By evaluating if color is expressed accurately from input to output through colorimetric color conversion experiment as above, the paper intended to propose color management method using optimal profile in printing process.

Evaluation of the Shear Wave Velocity Profile of Rockfill Zone of CFRD Using HWAW Method (국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(I): HWAW 방법을 사용한 CFRD 사력존 전단파 속도 주상도 결정)

  • Hwang, Hea-Jin;Park, Yun-Seok;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.5-15
    • /
    • 2014
  • Rockfill zone is a main part of the CFRD for safety and it is important to evaluate the status such as shear wave velocity profile of the rockfill zone. A surface wave method can be used to evaluate the rockfill zone but general surface wave method can have a difficulty to be applied for valuation of rockfill zone because of a stiff slope of dam and background noise in the field. In this research, HWAW method is applied to evaluate the shear wave velocity of rockfill zone. The field test of the proposed method is simple and fast and the HWAW method can determine the reliable shear wave velocity profile under severe noise field condition. To show feasibility of the proposed method, numerical simulation and field tests were performed. Through the numerical and field tests, the applicability of the proposed method was shown.

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

  • Bhatti, M.M.;Abbas, T.;Rashidi, M.M.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.468-475
    • /
    • 2016
  • In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF