• Title/Summary/Keyword: field of values

Search Result 4,033, Processing Time 0.031 seconds

The Application of Standard in According to Ground and Electrical Continuity Testing of Lightning Protection Equipment in Field (피뢰설비현장의 접지 및 전기적 연속성 시험에 따른 표준적용)

  • Song, Gil-Mok;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.583-588
    • /
    • 2014
  • In this study, there are examined to the grounding of lightning protection system and electrical continuity tests in the field. The standard for lightning protection system is different design or construction according to the characteristics of the structure. Ground is measured and compared at least four locations. According to the measured results in the field, the sampled values of the ground resistance are measured $5{\Omega}$ or less and the difference between each value is suitable as $0.2{\Omega}$ or less. The values of the electrical continuity test between ground and metal bodies are measured 3 groups such as isolated portion, the mechanical contacted portion, and the electrical continuity portion measuring $0.2{\Omega}$ or less. It is measured to be less than $0.2{\Omega}$ at all in metal bodies of underground. A metal body installed inside the structure is not isolated, but the resistance values are higher than $0.2{\Omega}$. Therefore, It must be carried out the structure having lightning protection system confirm the LPL(lightning protection level) and design the strategy.

Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement (실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법)

  • Doheon, Kim;Dongmin, Shin;Jungho, Hwang
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

The Influence of a Vortex on a Freely Propagating Laminar Methane-Air Flame

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.857-864
    • /
    • 2004
  • The change in the NO emission indices (EINO) in a two-dimensional plane has been investigated, which is due to the interaction between a vortex and methane-air flames established at different equivalence ratios, by solving the field equation. After solving the field equation, the spatial distribution of G-values is obtained. The NO emission index is calculated after applying the appropriate relation between the G-values and the NO production rate or the mass fraction of methane obtained from the library of freely propagating flames created from detailed simulations. When a vortex exists in a reacting flow field, in general EINO slightly increases, whereas ElNO is lowered in the vicinity of the vortex regardless of flow direction. A change in vortex size has negligible impact on EINO$\_$T/ but increasing the vortex strength slightly increases EINO$\_$T/ in the domain of this study.

An analysis of the trends of value research : Focused on mathematical values and mathematics educational values (가치 연구의 동향 분석: 수학적 가치와 수학 교육적 가치를 중심으로)

  • Pang, Jeong-Suk;Kim, Seung-Min
    • The Mathematical Education
    • /
    • v.58 no.4
    • /
    • pp.609-625
    • /
    • 2019
  • While research projects and reports on values in mathematics education increased in the international community over the years, little has been known about the topic and research findings in South Korea. The purpose of this study was to analyze the trends of value research in mathematics education focused on the "mathematical values" and "mathematics educational values" as defined by Bishop (1996) through a systematic review of the literature. A total of 66 research papers related to value research were analyzed in terms of the following four areas: research period, projects, target research population, and research method. The results of this study showed that the value research that was carried out was project-driven. There was an increase in both the number of papers published and countries that were studied, which encouraged the continuous expansion of the field. Furthermore, the topic of mathematics educational values was studied more than mathematical values. It was also observed that the survey method, among others, was frequently used to explore mathematics educational values of middle school teachers. Finally, research methods related to the measurement of value were gradually refined over time. Based on these results, this paper describes implications to conduct and advance value research in South Korea in various aspects, including in the field of mathematics education.

A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer (전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구)

  • Ahn, Hyun-Mo;Kim, Min-Soo;Song, Jae-Sung;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

Calculation of the Magnetic Moments and the Dipolar Shifts for d$^1$ and d$^2$Complexes in a Strong Ligand Field of Trigonal Symmetry

  • Ahn, Sang-Woon;Suh, Hyuk-Choon;Ko, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.104-109
    • /
    • 1982
  • A method to calculate the magnetic moments for $d^1$ and $d^2$ complexes in a strong crystal field of trigonal symmetry has been developed in this work choosing the trigonal axis (Ⅲ) as the quantization axis. The calculated magnetic moments using this method for $d^1$ and $d^2$ complexes in a strong trigonal ligand field fall in the range of the experimental values. The dipolar shifts for $d^1$ and $d^2$ complexes in a strong trigonal ligand field are also calculated using the calculated magnetic susceptibility components. The calculated values of the dipolar shifts also fall in the reasonable range.

ZORA DFT Calculation of $^{11}$B Electric Field Gradient Tensor for Lithium Borates

  • Woo, Ae-Ja;Wasylishen, Roderick E.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.70-76
    • /
    • 2004
  • ZORA-DFT calculations of $^{11}$B EFG (electric field gradient) tensors for lithium borates, LiB$_3O_5$ (LBO) and Li$_2B_4O_7$ (LTB), were performed. The calculated values of 11B quadrupole coupling constant and asymmetry parameter are in good agreement with the experimental values. The sign of the quadrupole coupling constant for the tetrahedral boron site was deduced from the distortion from the ideal tetrahedral symmetry.

  • PDF

The Study on the Tube Drawing Process with a Floating Plug (프로팅 프러그를 사용한 관재 인발가공에 관한 연구)

  • Choi, Jae-Chan;Jin, In-Tai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.24-31
    • /
    • 1988
  • The Upper Bound Solution has been used to investigate the effect of the various parameters on the floating-plug tube-drawing precess. A kinematically admissible velocity field considering the change of the tube thickness is proposed for the deformation process. Taking into account the position of the plug in the deforming region, shear energy at entrance and exit, friction energy on contact area, homogeneous energy are calculated. The theoretical values in proposed velocity field are good agreement with experimental values, It is investigated that the tube thickness in the deforming region is changed slightly toward minimization of deforming energy and then the drawing stress in lower than the crawing stress in the velocity field that the tube thickness is uniform.

  • PDF