• Title/Summary/Keyword: field loading test

Search Result 383, Processing Time 0.028 seconds

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

A Study on Design Method of Geogrid Encased Stone Colum for Settlement Reduction in Railroad (철도노반 침하저감을 위한 토목섬유 감쌈 쇄석말뚝 설계방안 고찰)

  • Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • The geogrid encased stone column (GESC) system, which increases the confinement effect, has been developed to improve the load carrying capacity of stone columns. The resonable design method for calculating the geogrid ring tension force and ultimate bearing capacity that can be applied to the design of GESC is proposed. In order to calculate design procedure for GESC, two ultimate bearing capacities were compared. One is the ultimate bearing capacity measured using data of the field loading test in light railway site and the other is the ultimate bearing capacity using suggested design procedure of GESC. The results indicated that design method of GESC higher ultimate bearing capacities compared with field loading test.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

Rutting Potential Evaluation of Asphalt Mixtures by Repeated-Load Creep Test (반복하중 크리프시험에 의한 아스팔트 혼합물의 소성변형특성 평가)

  • Zhu L.Y.;Fwa T.F.
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.21-28
    • /
    • 2006
  • Field or laboratory wheel tracking tests have been employed for the evaluation of the rutting potential of asphalt paving mixtures. Compared to field tests, laboratory wheel tracking tests are much less expensive and more manageable for most road projects. However, most test laboratories are not equipped to perform such tests because there does not exist any standard test procedure, and the required equipment is rather expensive. Futhermore, the size of test specimens and the relatively large quantity of test mixture required present difficulties for laboratory specimen mixing and compaction. This paper describes a project conducted to study the feasibility of replacing wheel tracking testsby a repeated-load creep test for rutting potential evaluation. Comparisons were made between the results of the two tests for different test temperatures, loading speeds and applied pressures. Three types of asphalt mixtures were studied in the test program. Favorable conclusions concerning the use of the repeated-load test for rutting potential evaluation were drawn based on the findings of the experimental test results. The correlation between the two types of tests was found to be good for all threeasphalt mixtures. Adopting the repeated-load creep test would lead to cost savings since it employs standard test equipment already available in most laboratories. It would also result in substantial time savings due to the much smaller quantity of mix needed, and the ease in specimen preparation.

  • PDF

Deformation Analysis of Composits-Patched Concrete Using Moire Interferometry (무아레 간섭계를 이용한 복합재 보강 콘크리트의 변형해석)

  • Ju, Jin-Won;Chae, Su-Eun;Sin, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2002
  • Many of aged and damaged concrete structure have been revitalized with composite reinforcement. Flexural behaviors of composite-patched concrete specimens are characterized by high-sensitivity moire interferometry. The three-mirror, four-beam interferometry system and a compact loading system are used for obtaining singe patterns representing whole-field contour maps of in-plane displacements. It is seen from the calibration test for the loading system that the measured bending displacement is in excellent agreement with the displacement calculated by the beam theory. The crack opening displacement as well as the bending and the horizontal displacement fur the notched and unnotched specimen are investigated. The results also show that the notched specimen reinforced by a composite sheet has sufficient stiffness and strength compared to the original concrete specimen.

FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert

  • Wadi, Amer;Pettersson, Lars;Karoumi, Raid
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • This paper utilizes 3D FEM to provide deeper insights about the structural behaviour of a 6.1 m span steel culvert, which was previously tested under extreme loading. The effect of different input parameters pertaining to the backfill soil has been investigated, where the structural response is compared to field measurements. The interface choice between the steel and soil materials was also studied. The results enabled to realize the major influence of the friction angle on the load effects. Moreover, the analyses showed some differences concerning the estimation of failure load, whereas reasons beyond this outcome were arguably presented and discussed.

Design of tall residential buildings in Singapore for wind effects

  • Balendra, T.;Ma, Z.;Tan, C.L.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.221-248
    • /
    • 2003
  • The design of high-rise building is often influenced by wind-induced motions such as accelerations and lateral deflections. Consequently, the building's structural stiffness and dynamic (vibration periods and damping) properties become important parameters in the determination of such motions. The approximate methods and empirical expressions used to quantify these parameters at the design phase tend to yield values significantly different from each other. In view of this, there is a need to examine how actual buildings in the field respond to dynamic wind loading in order to ascertain a more realistic model for the dynamic behavior of buildings. This paper describes the findings from full-scale measurements of the wind-induced response of typical high-rise buildings in Singapore, and recommends an empirical forecast model for periods of vibration of typical buildings in Singapore, an appropriate computer model for determining the periods of vibration, and appropriate expressions which relate the wind speed to accelerations in buildings based on wind tunnel force balance model test and field results.

Trend of the track irregularity with reinforced Railroad Roadbed materials measuring in Service Railroad line (실 열차구간에서 측정된 강화노반재료별 궤도틀림 진행 평가)

  • Choi, Chan-Yong;Lee, Jee-Ha;Park, Chang-Woo;Kim, Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1833-1837
    • /
    • 2007
  • The railroad roadbed plays an important role in distributing and transferring the train loading to subgrade, preventing subgrade from bearing softened by providing appropriate stiffness for subgrade, and eventually supporting the track structures. Presently, the reinforced roadbed was widely constructed in high speed line and is proceeding a research about economical thickness and methodologies for the design of reinforced roadbed. Field test section is located at Kongbu line which is from Suwon to Pungtack. In this study, field test were measured a track irregularity with several types of reinforced roadbed materials by using Track Master. The field testing were conducted between March, 2006 and March, 2007.

  • PDF

Trend of the Long-term track irregularity with Reinforced Railroad Roadbed materials (강화노반재료별 장기 궤도틀림 진행 평가)

  • Choi, Chan-Yong;Lee, Jee-Ha;Park, Tae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.281-285
    • /
    • 2008
  • The railroad roadbed plays an important role in distributing and transferring the train loading to subgrade, preventing subgrade from bearing softened by providing appropriate stiffness for subgrade, and eventually supporting the track structures. Presently, the reinforced roadbed was widely constructed in high speed line and is proceeding a research about economical thickness and methodologies for the design of reinforced roadbed. Field test section is located at Kyungbu line which is from Suwon to Cheonan In this study, field test were measured a track irregularity with several types of reinforced roadbed materials by using Track Master. The field testing were conducted between March, 2006 and April, 2008.

  • PDF

Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes through Time-Temperature Superposition

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 2005
  • The creep resistance of geogrids is one of the most significant long-term safety characteristics used as the reinforcement in slopes and embankments. The failure of geogrids is defined as creep strain greater than 10%. In this study, the accelerated creep tests were applied to polyester geogrids at various loading levels of 30, 50% of the yield strengths and temperatures using newly designed test equipment. Also, the new test equipment permitted the creep testing at or above glass transition temperature($T_g$) of 75, 80, $85^{\circ}C$. The time-dependent creep behaviors were observed at various temperatures and loading levels. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. The shifting factors(AFs) were obtained using WLF equation. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results confirmed that the failure distribution of geogrids followed Weibull distribution with increasing failure rate and the lifetimes of geogrids were close to 100 years which was required service life in the field with 1.75 of reduction factor of safety. Using the newly designed equipment, the creep test of geogrids was found to be highly accelerated. Furthermore, the time-temperature superposition with the newly designed test equipment was shown to be effective in predicting the lifetimes of geogrids with shorter test times and can be applied to the other geosynthetics.