• Title/Summary/Keyword: field loading test

Search Result 382, Processing Time 0.029 seconds

Long-Term Measurement under the Moving train at the Test Reinforced Roadbed Site in Railway (철도강화노반 시험부설구간에서의 열차 주행시 장기거동 계측)

  • 황선근;신민호;이성혁;최찬용;이시한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.223-230
    • /
    • 2001
  • Nine different types of the reinforced railroad roadbeds which . are located in between Suwon-Chunan station of Kyongbu line were constructed in order to increase the bearing capacity of railroad roadbed and to improve the ridability as a part of speed-up project of conventional railroad systems. Each three sections were composed of weathered granite soil, crushed stone and furnace slag(HMS25), and fully instrumented with earth pressure cells, settlement plates and geophones to monitor the behavior of roadbeds under actual train loads. Field measurement has continued since October 31, 2000 and presently with rather longer measurement interval. The measurement data such as settlement, earth pressure and vibration levels are currently under analysis process. In this paper, only cumulative measurement data of railroad roadbeds were introduced. In the near future, comprehensive measurement data and result of analysis will be presented and design technique for the reinforced railroad roadbed will be proposed as a final product of this study.

  • PDF

Safety Evaluation of a Bridge Using Round Piles Connected Laterally to Each Other (원형강 파일이 횡방향 상호 연결된 가설교량의 안전성 평가)

  • Kim, Yong-On;Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.98-106
    • /
    • 2006
  • The substructure of temporary bridges used during the construction period of main bridges needs to be simple and strong at the same time so that it doesn't block running water. When the water flow is hindered by sub-structure of the bridges, as it happens when H beams with bracing are used, either the water floods or the bridge gets damaged. Therefore, using round beams for the substructure and connect them together is a preventive choice considering the intensive raining in the summer. The bridges using round beams for the substructure have also benefited by fast construction because of fewer bracing and in-situ welding. Because the round-pile-connecting method is relatively new, the safety evaluation of the constructed bridge is an essential procedure before being used in the field. The field evaluation of a bridge including the vehicle loading test and moving load analysis has been conducted and the results showed the safety requirement is satisfied.

Analysis of Stress Behavior on Field Welded Joints of U-rib in Steel Bridge (U리브 현장용접이음부 응력거동에 관한 연구)

  • Kang, Chang Ib;Choi, Seong Min;Kook, Seung Kyu;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.387-396
    • /
    • 2004
  • In this paper, stress analysis anda 3-point bending fatigue test were conducted on the full-scale specimen to investigate the effects of misalignment at the U-rib welded joint due to misfitting in the steel deck bridge. In addition, the researchers investigated the direction and starting point of fatigue cracks by SEM (Scanning Electron Microscope) and beach mark. The results of the stress analysis show that maximum stress occurred at the bottom corner of the U-rib, and that the stress was large when the magnitude of the misalignment was large. On the other hand, the results of the static loading test of the full-scale specimen show that stress was large at the bottom corner of the U-rib. In addition, fatigue life was short when the misalignment was large and fatigue life was short when the misalignment was large and fatigue life was short when the misalignment was large and fatigue life was large when the misalignment was small, as indicated by the results of both the static loading test and the fatigue test. From the observation of the failure surface, fatigue cracks began manifesting at the root of the base metal and proceeded to the bead surface (weld toe).

Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect (Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험)

  • 정형식;김도열;김정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.343-354
    • /
    • 2003
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20 and 25cm, on five different kinds of subsoil. Based on the analyzed results, this paper also proposes a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Until now, uneconomic constructions have been conducted because of unreasonable evaluation in estimating bearing capacity and settlement of footings from Plate-Load Test in fields. In the application of the formula proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

An Experimental Study on Bearing Capacity of Drilled Shaft with Mid-size (중구경 현장타설말뚝의 지지력 특성에 관한 실험적 연구)

  • Lee, Kwang-Wu;You, Seung-Kyong;Park, Jeong-Jun;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.263-272
    • /
    • 2019
  • This paper describes the results of bearing capacity using field loading test of pile, in order to extend the applicability of drilled shaft with mid-size, and the results were compared with the prediction results of design bearing capacity by empirical formular. The static load test result showed that the allowable bearing capacity of high pile strength was about 2.4 times higher than that of low pile strength. The dynamic load test result showed that the allowable bearing capacity of high pile strength was about 1.4 times~1.5 times higher than that of low pile strength. The comparison result of allowable bearing capacity between static and dynamic load test showed that the difference of allowable load ranged from 3% to 6% under the same settlement conditions. As a result of comparing the ultimate bearing capacity by load test and design bearing capacity, it was found that the FHWA proposed equation could be more reasonable than the other proposed equation in load sharing ratios of end bearing and skin friction.

Geotechnical Characteristics of a Waste Lime Embankment (부산물석회 성토지반의 지반공학적 특성)

  • Hong, Seung Seo;Kim, YoungSeok;Bae, Gu-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.547-555
    • /
    • 2015
  • This work investigated the geotechnical characteristics of an embankment constructed with a mixture of soil and waste lime. The waste lime was a by-product of the manufacture of Na2CO3 at a near by chemical factory in Incheon. Field measurements were take three years after construction, and included geotechnical tests such as field density measurement, plate loading testing, dynamic cone penetration testing, and field CBR measurement. The results indicate that the geotechnical characteristics of waste lime mixtures are suitable for embankment works.

Dynamic analysis of train-bridge system under one-way and two-way high-speed train passing

  • Jahangiri, Meysam;Zakeri, Jabar-Ali
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.33-44
    • /
    • 2017
  • In this paper, the dynamic responses of train-bridge system under one-way and two-way high-speed train passing are studied. The 3D finite element modeling is used and the bridge and train are modeled considering their details. The created model is validated by the results of the dynamic field test. To study the effect of train speed, different train passing scenarios are analyzed, including one-way passing, two-way passing in different directions at same speeds, and two-way passing in different directions at different speeds. The results show that the locations of maximum acceleration are different in one-way and two-way passing modes, and the maximum values in two-way passing mode are higher than those in one-way passing mode, while the maximum accelerations in both modes are almost identical. The displacement and acceleration values in different scenarios show peaks at speeds of 260 and 120 km/h, due to the proximity of the natural frequencies of the bridge and loading frequencies of the train at these speeds.

S-N Curve Deduction of a KTX High-Speed Train Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX고속열차 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.388-395
    • /
    • 2009
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structures of KTX under operation conditions. However, actual fatigue life cannot be obtained because the conventional fatigue tests are not adequate to the real load conditions. Moreover foreign component makers have not provided data of the loading stresses (S) versus cycles at the failure (N). In this study, we suggested a deduction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data. After that, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule. The deduced S-N curve was applied to the performance evaluation of Korean-made sealed knuckles compared with imports.

Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter (연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향)

  • Hwang, Jin-Woo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

Application of Precious Slag Ball for horizontal drain material by field experimental test (현장시험을 통한 수평배수재로서의 풍쇄 슬래그의 적용성에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kim, Soo-Wan;Yoo, Jeong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.449-456
    • /
    • 2009
  • As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems prior to structures are constructed by the method of improvement of soft ground. Generally, the sand mat is used to as a horizontal drain material and loading base for soft ground improvement work. However, as the natural environment can be damaged by sand pickings of large quantity and the volume which is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the result of field experimental test to use Precious Slag Ball to solve these issues instead of sand mat as the replacing material. This study evaluated the performance of Precious Slag Ball as a sand mat in terms of discharge capacity, settlement, and settlement through the K-Embank program.

  • PDF