• Title/Summary/Keyword: field emission displays(FEDs)

Search Result 12, Processing Time 0.025 seconds

Current development of microtip FEDs and carbon nanotube FEDs

  • Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.49-50
    • /
    • 2000
  • 5.2" microtip field emission displays (FEDs) with high voltage applications are fabricated. Nano-structural analysis on microtips is performed for the reliable operation of FEDs. Chemical compositions on the apex of microtips are fully analyzed. A charging mechanism on spacers is simulated and experimentally confirmed with micro-images. A gas-aging mechanism is also studied with integration step of FEDs. The brightness of more than 300 $cd/m^2$ is achieved. In addition, as a new concept, 9" color carbon nanotube FEDs (CNT-FEDs) are introduced using well-aligned carbon nanotubes on glass substrates by paste squeeze and surface treatment techniques. A number of carbon nanotubes, $5-10/{\mu}m2$, are uniformly distributed over a large area. The turn-on fields of 1 $V/{\mu}m$ and field emission currents of 1.5 mA at 3 $V/{\mu}m$ are acquired. Different mechanisms between microtip FEDs and CNT-FEDs are discussed.

  • PDF

p" Color Field Emission Displays Using Carbon Nanotube Emitters

  • Lee, N.S.;Park, W.B.;Kim, J.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.211-211
    • /
    • 2000
  • Carbon nanotubes (CNTs) have been spotlighted as one of promising field emission displays(FEDs). For the first time, to authors knowledge, we have developed the 9" color CNT-FEDs with the resolution of 240x576 lines. The 9" CNT-FEDs with diode-type and triode-type structures are presented. The well-dispersed CNT paste was squeezed onto the metal-patterned cathode glass. For the anode plate, the Y2O2S:Eu, ZnS:Ag,Cl low-voltage phosphors were printed for red, green, and blue colors, respectively. The vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images vacuum-packaged panel maintained the vacuum level of 1x10-7 Torr. The uniform moving images were demonstrated at 2 V/um. High brightness of 800, 200, and 150cd/m2 was observed on the green, red, and blue phosphors at V/um, respectively. Field emission characteristics of a triode-type CNT-FED were simulated using a finite element method. the resultant field strength on the cathode was modulated by gate bias and emitted electrons were focused on the anode. A relatively uniform emission image was experimentally achieved at the 800V anode. A relatively uniform emission image was experimentally achieved at the 800V anode and the 50-180 V gate biases. Energy distribution of electrons emitted from CNTs was measured using an energy analyzer. The maximum peak of energy curve corresponded to the Fermi energy level of CNTs. The whole fabrication processed of CNT-FEDs were fully scalable and reproducible. Our CNT-FEDs has demonstrated the high potential of large-area and full-color applications with very low cost fabrication and low power consumption.

  • PDF

Carbon nanotubes for Field Emission Displays.

  • Milne, W.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.919-922
    • /
    • 2004
  • The Field Emission Display is potentially an excellent display with high brightness and low power consumption with wide viewing angle but more work is still needed in order to identify the ideal electron emitter for such displays. This paper will review the work that we have carried out in Cambridge aver the past couple of years on optimisation of Carbon nanotubes for use as the cold cathode emitters that are possible candidates as the electron sources in second generation FEDs.

  • PDF

Luminescence Enhancement by Ba in SrTiO3:Pr, Al Red Phosphor for Field Emission Displays

  • Won, Chang-Whan;Lee, Jong-Eun;Won, Hyung-Il;Kim, Kwang-Bok;Song, Yoon-Ho;Kang, Seung-Youl;Koo, Kyoung-Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.743-745
    • /
    • 2006
  • The luminescence properties of $Sr_{1-x}Ba_xTiO_3:Pr$, Al red phosphor for Field Emission Displays (FEDs) have been investigated in powders prepared though solid-state reactions. $Sr_{1-x}Ba_xTiO_3:Pr$, Al red phosphors indicate a higher luminescent intensity, and have been found to have potential for field emission displays. The addition of Ba increased the luminescence intensity at 617 nm by up to 30%. Ba ions are effective in producing the energy transfers from host-to-activator in 4f-5d transitions.

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.

Carbon-Nanotube Based Field-Emission Displays for Large Area and Color Applications

  • Choi, Won-Bong;Lee, Nae-Sung;Yi, Whi-Kun;Jin, Yong-Wan;Choi, Yong-Soo;Han, In-Taek;Jang, Hyeong-Yong;Kim, Hoonn-Young;Kang, Jung-Ho;Yun, Min-Jae;Park, Sang-Hyeun;Yu, Se-Gi;Jang, Jae-Eun;You, Jang-Hun;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.59-62
    • /
    • 2000
  • The first 9-inch carbon nanotube based color field emission displays (FEDs) are integrated using a paste squeeze technique. The panel is composed of 576 x 242 lines with implementation of low voltage phosphors. The uniform and moving images are achieved only at $2V/{\mu}m$, This demonstrates a turning point of nanotube for large area and full color applications.

  • PDF

Improved Field Emission by Liquid Elastomer Modification of Screen-Printed CNT Film Morphology

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • The effect of improvement on the surface morphology of screen-printed carbon nanotube (CND) films was studied by using the optically clear poly-dimethylsiloxane (PDMS) elastomer for surface treatment. After the PDMS activation treatment was applied to the diode-type CNT cathode, the entangled carbon nanotube (CNT) bundles were broken up into individual free standing nanotubes to remarkably improve the field-emission characteristics over the as-deposited CNT film. Also, the cathode film morphology of a top gated triode-type structure can be treated by using the proposed surface treatment technique, which is a low-cost process, simple process. The relative uniform emission image showed high brightness with a high anode current. This result shows the possibility of using this technique for surface treatment of large-size field emission displays (FEDs) in the future.

Triode-Type Field Emission Displays with Carbon Nanotube Emitters

  • You, J.H.;Lee, C.G.;Jung, J.E.;Jin, Y.W.;Jo, S.H.;Nam, J.W.;Kim, J.W.;Lee, J.S.;Jang, J.E.;Park, N.S.;Cha, J.C.;Chi, E.J.;Lee, S.J.;Cha, S.N.;Park, Y.J.;Ko, T.Y.;Choi, J.H.;Lee, S.J.;Hwang, S.Y.;Chung, D.S.;Park, S.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.48-53
    • /
    • 2001
  • Carbon nanotube emitters, prepared by screen printing, have demonstrated a great potential towards low-cost, largearea field emission displays. Carbon nanotube paste, essential to the screen printing technology, was formulated to exhibit low threshold electric fields as well as an emission uniformity over a large area. Two different types of triode structures, normal gate and undergate, have been investigated, leading us to the optimal structure designing. These carbon nanotube FEDs demonstrated color separation and high brightness over 300 $cd/m^2$ at a video-speed operation of moving images. Our recent developments are discussed in details.

  • PDF

New design and its characteristics of full color anode panel for field emission display

  • Han, J.I.;Park, S.K.;Kim, W.K.;Kwak, M.G.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.90-94
    • /
    • 1999
  • Field Emission display (FEDs) require enhancement in both driving methods and process techniques to improve the display image quality. However, from the point of view of manufacturing, it is difficult to find methods and techniques to realize low cost manufacturing. New and simple color phosphor screen designs were suggested with non-crossed electrode lines and full color anode panels for small area displays were demonstrated. To avoid unwanted reaction with gases produced from phosphors in a high vacuum glass container, a very thin polyimide layer was coated on the phosphor screen. Moreover, to improve the display image quality, black matrix composed of inorganic materials was fabricated. This paper describes the performance and characteristics of the new full color anode panels.

  • PDF

Cathodoluminescence and Longevity Properties of Potential Sr1-xMxGa2S4:Eu (M = Ba or Ca) Green Phosphors for Field Emission Displays

  • Ko, Ki-Young;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.822-826
    • /
    • 2008
  • We report the cathodoluminescence and aging properties of a series of green phosphors of formula $Sr_{1-x}M_xGa_2S_4$:Eu (x = 0.0-1.0, M = Ba or Ca) that have potential applications in field emission displays (FEDs). The series of phosphors was synthesized via NaBr-aided solid-state reactions in a flowing $H_2S$ stream. A low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu maintains the orthorhombic phase of pure $SrGa_2S_4$:Eu phosphors. Further, a low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu provides various green colors and sufficient brightness for FED applications. Substitution of Ba or Ca for Sr in $SrGa_2S_4$:Eu also improved the stability of the phosphor when it was operated under electron-beam irradiation of 5 kV.