• Title/Summary/Keyword: field emission characteristics

Search Result 641, Processing Time 0.03 seconds

Growth and Resistance Properties of Carbon Nanowall According to the Variation of Reaction Gas (반응가스의 변화에 따른 탄소나노월의 성장 및 저항 특성)

  • Kim, Sung Yun;Lee, Sangjoon;Choi, Won Seok;Joung, Yeun-Ho;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increase the reaction area of graphite electrodes. In this study, we have investigated the growth properties of carbon nanowall (CNW) according to the ingredient of gas. Microwave plasma enhanced chemical vapor deposition (MPECVD) system was used to grow CNW on Si substrate with a variety of the reaction gas. The planar and vertical growth conditions of the grown CNWs according to the ingredient of the gas were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The electrical characteristics of CNWs were analyzed using a 4-point probe.

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

Soil Moisture Content Estimation Using Remote Sensing Technique (원격 측정 기법을 이용한 토양 함수비의 측정)

  • Lee, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.535-542
    • /
    • 1994
  • Remote sensing technique is based on the estimation of land surface characteristics from the measurement of the emitted radiation from the earth. The hydrologically related parameters studied using this approach include surface temperature, evapotranspiration, soil moisture, precipitation and snow. This study introduces a method for estimating moisture content of a bare soil from the observed and simulated brightness temperature. In a bare soil, microwave emission depends on moisture content, soil temperature, and surface roughness. The method is based on a radiative transfer model with some modifications of Fresnel reflection coefficient to take into account the effect of surface roughness. One smooth bare field and two fields with different surface roughness are prepared for the study. The results indicate that the effect of surface roughness is to increase the soil's brightness temperature and to reduce the slope of regression between brightness temperature and moisture contents.

  • PDF

Ga doped ZnO Thin Films for Gas Sensor Application (Ga이 첨가된 ZnO 박막의 가스센서로의 응용 연구)

  • Hwang, Hyun-Suk;Yeo, Dong-Hun;Kim, Jong-Hee;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.499-502
    • /
    • 2008
  • In this work, Ga-doped ZnO (GZO) thin films for gas sensor application were deposited on low temperature co-fired ceramics (LTCC) substrates, by RF magnetron sputtering method. The LTCC substrate is one of promising materials for this application since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.). The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The structural properties of the fabricated GZO thin film with thickness of 50 nm is analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The film shows good adhesion to the substrate. The GZO gas sensors are tested by gas measurement system and show fast response and recovery characteristics to $NO_x$ gas that is 27.2 and 27.9 sec, recpectively.

Photoluminescence Characteristics of ZnO Nanowires Grown on a-, c- and m-plane Oriented 4H-SiC Substrates (4H-SiC 기판의 a-, c-, m-면방향에 따른 ZnO 나노선의 Photoluminescence 특성 분석)

  • Kim, Ik-Ju;Yer, In-Hyung;Moon, Byung-Moo;Kang, Min-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.349-352
    • /
    • 2012
  • ZnO thin films were deposited on a-, c- and m- plane oriented 4H-SiC substrates by pulsed laser deposition. ZnO nanowires were formed on substrates by tube furnace. Shape and density of the ZnO nanowires were investigated by field emission scanning electron microscope. Average surface roughness and root mean square surface roughness were measure by atomic force microscope. Optical properties were investigated by Photoluminescence measurement. Density of ZnO nanowires grown on a-, c- and m-plane oriented 4H-SiC substrates were 17.89 ${\mu}m^{-2}$, 9.98 ${\mu}m^{-2}$ and 2.61 ${\mu}m^{-2}$, respectively.

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Characteristics of Surface Reaction of SnO2 Thin Films Prepared by MOCVD (MOCVD로 제조한 SnO2 박막의 표면반응 특성)

  • Park, Kyung-Hee;Seo, Yong-Jin;Hong, Kwang-Jun;Lee, Woo-Sun;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • Tin dioxide($_SnO2$) thin films were deposited on alumina substrate by metal-organic chemical vapor deposition (MOCVD) as a function of temperature and time. Thin films were fabricated from di-n-butyltin diacetate as a precursor and oxygen as an oxidation. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy(FE-SEM). The thickness was linearly increased with deposition time and $SnO_2$structure was found from $375^{\circ}C$ for the deposition time of 32 min. The maximum sensitivity to 500ppm CO gas was observed for the specimens deposited at $375^{\circ}C$ for 2 min at the operating temperature of $350^{\circ}C$. Gas sensitivity to CO increased with decreasing the film thickness. The sensing properties of response time, recovery and sensitivity of CO were changed with variations of substrate temperature and time.

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature (폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF