• 제목/요약/키워드: field dynamics of space

검색결과 120건 처리시간 0.025초

Solution Structure of Bovine Pancreatic Trypsin Inhibitor using NMR Chemical Shift Restraints

  • Park, Kyunglae;Wil
    • 한국자기공명학회논문지
    • /
    • 제1권2호
    • /
    • pp.79-94
    • /
    • 1997
  • The solution structure of bovine pancreatic trypsin inhibitor(BPTI) has been refined by NMR chemical shift data of C${\alpha}$H using classical molecular dynamics simulation. The structure dependent part of the observable chemical shift was modeled by ring current effect, magnetic anisotropy effect from the nearby groups, whereas the structure independent part was replaced with the random coil shift. A new harmonic function derived from the differences between the observed and calculated chemical shifts was added into physical force field as an pseudo potential energy term with force constant of 250 kJmol-1 ppm-2. During the 1.5 ns molecular dynamics simulation with chemical shift restraints BPTI has accessed different conformation space compared to crystal and NOE driven structure.

  • PDF

Mathematical modeling of the local temperature effect on the deformation of the heat-shielding elements of the aircraft

  • Antufiev, Boris A.;Sun, Ying;Egorova, Olga V.;Bugaev, Nikolay M.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.59-68
    • /
    • 2022
  • The physical and mathematical foundations of the heat-shielding composite materials functioning under the conditions of aerodynamic heating of aircraft, as well as under the conditions of the point effect of high-energy radiation are considered. The problem of deformation of a thin shallow shell under the action of a local temperature field is approximately solved. Such problems arise, for example, in the case of local destruction of heat-protective coatings of aircraft shells. Then the aerodynamic heating acts directly on the load-bearing shell of the structure. Its destruction inevitably leads to the death of the entire aircraft. A methodology has been developed for the numerical solution of the entire complex problem on the basis of economical absolutely stable numerical methods. Multiple results of numerical simulation of the thermal state of the locally heated shallow shell under conditions of its thermal destruction at high temperatures have been obtained.

중소형 열병합 발전용 SCR 장치의 유동 균일화를 위한 전산유체해석 최적화 연구 (An Optimized Analysis of the Optimal Flow Uniformity in SCR Facility for Small-and Mid-Sized CHPs)

  • 이상환;신상우;김정섭
    • 플랜트 저널
    • /
    • 제9권3호
    • /
    • pp.48-52
    • /
    • 2013
  • 본 연구에서는 전산유체해석(CFD)을 통하여 SCR 탈질설비 내부의 유동장 흐름을 전산모사하였다. 또한 유동장의 균일도를 분석하기 위해 기존 설비에 대한 해석을 수행하였으며 이를 통해 문제점을 도출하고 개선하였다. 개선방안으로는 곡관에 guide vane을 설치하여 곡관상에 기류를 균일하게 안내해 주었으며, baffle을 설치하여 SCR설비로 초기 유입된 기류의 균일한 공간 분포를 도출하였다. 마지막으로 porous plate를 baffle 하단에 설치하여 균일류 형성의 최적화 모델을 도출하였다.

  • PDF

Reduced ion mass effects and parametric study of electron flat-top distribution formation

  • 홍진희;이은상;;민경욱
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.118.2-118.2
    • /
    • 2012
  • In particle-in-cell (PIC) simulation studies related to ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. But it was not clearly verified how electrons dynamics are coupled with the slower evolution of ion-ion interactions under the external electric field. We have studied the ion beam driven instability using a 1D electrostatic PIC code by comparing different rescaling of parameter with real ion mass from the reference simulation with reduced ion mass. As the external electric field is stronger, the excited unstable mode range was more sensitively affected by the system size with the real mass ratio than the reduced ion mass. The results show that the reduced mass ratio should be used cautiously in PIC code as the electron dynamics can modify the ion instabilities. Additionally we found the formation of electron flat-top distribution in the final saturation stage. Simulation results show that in the early phase electrostatic solitary waves are quasi-periodically formed, but later they are fully dissipated resulting in heated, flat-top distributions. New electron beam components are occasionally formed. These are a consequence of the interaction with solitary wave structures. We parametrically investigate the development of electron phase space distributions for various drift speeds of ion beams and temperature ratios between ions and electrons

  • PDF

저궤도위성 궤도운동 및 자세에 영향을 미치는 외부교란토크 분석

  • 최홍택;용기력;이승우
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.54-62
    • /
    • 2003
  • 우주공간상의 위성체는 아주 미세한 크기에 불과하지만 여러 가지 원인에 의한 외부교란토크를 받는다. 외부교란토크는 위성체의 궤도 운동뿐만 아니라 위성체의 자세에도 큰 영향을 미친다. 저궤도위성의 자세동역학에 작용하는 외부교란토크는 다양하다. 이러한 것들 중 중요한 4가지 원인은 중력경도, 지구자기장, 태양복사압 및 대기저항 등을 들 수 있다. 본 연구에서는 저궤도위성과 같은 저궤도위성에 작용하는 외부교란토크를 상세히 분석하고 저궤도위성 자세동역학에 미치는 외부교란토크의 영향을 상세히 기술한다.

  • PDF

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF

Development of an Engineering Education Framework for Aerodynamic Shape Optimization

  • Kwon, Hyung-Il;Kim, Saji;Lee, Hakjin;Ryu, Minseok;Kim, Taehee;Choi, Seongim
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.297-309
    • /
    • 2013
  • Design optimization is a mathematical process to find an optimal solution through the use of formal optimization algorithms. Design plays a vital role in the engineering field; therefore, using design tools in education and research is becoming more and more important. Recently, numerical design optimization in fluid mechanics, which uses computational fluid dynamics (CFD), has numerous applications in the engineering field, because of the rapid development of high-performance computing resources. However, it is difficult to find design optimization software and contents for educational purposes in aerospace engineering. In the present study, we have developed an aerodynamic design framework specifically for an airfoil, based on the EDucation-research Integration through Simulation On the Net (EDISON) portal. The airfoil design framework is composed of three subparts: a geometry kernel, CFD flow analysis, and an optimization algorithm. Through a seamless interface among the subparts, an iterative design process is conducted. In addition, the CFD flow analysis and the design framework are provided through a web-based portal system, while the computation is taken care of by a supercomputing facility. In addition to the software development, educational contents are developed for lectures associated with design optimization in aerospace and mechanical engineering education programs. The software and content developed in this study is expected to be used as a tool for e-learning material, for education and research in universities.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

Algorithm for Detection of Solar Filaments in EUV

  • Joshi, Anand D.;Cho, Kyung-Suk
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.66.2-66.2
    • /
    • 2015
  • In today's age when telecommunications using satellite has become part of our daily lives, one has to be employ preventive measures to avert any possible danger, of which solar activity is the major cause. Coronal mass ejections (CMEs) heading towards the Earth can lead to disturbances in the Earth's magnetosphere, if their magnetic field is oriented southward. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Also, filaments show activation up to a few hours prior to launch of a CME and thus can provide advance warning. In this study, we present an algorithm for the detection of solar filaments seen in the extreme ultraviolet (EUV) from Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Various morphological operations are employed to identify and extract the filaments. These filaments are then tracked in order to determine their size and location continuously.

  • PDF

A Study of the Momentum Balance in the High-Latitude Lower Thermosphere Based on the Ncar-Tiegcm: Dependence on the Interplanetary Magnetic Field (IMF)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Arthur D. Richmond
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.70-70
    • /
    • 2004
  • Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)

  • PDF