• Title/Summary/Keyword: fiduciary markers

Search Result 4, Processing Time 0.014 seconds

New Fiduciary Plate and Orientation Marker for High Energy Radiation Therapy (고에너지 방사선치료의 정도관리를 위한 Fiduciary Plate 및 Orientation Marker의 개발)

  • Wu Hong-Gyun;Huh Sun Nyung;Kim Hak Jae
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • Purpose : A new fiduciary plate and orientation marker have been devised to assist the quality assurance (QA) procedures for port films in radiation therapy department. The plate is used in conjunction with the film/cassette combination during weekly QA procedures, at Seoul National University Hospital (SNUH), in order to verify treatment fields in high radiation therapy. Materials and Methods : A new fiduciary plate was fabricated using an acrylic plate, cerrobend, standard blocking tray and mercury. The acrylic plate had the dimension of $1{\times}25{\times}25$ cm, with two fiduciary markers. The plate was rigidly attached onto the standard blocking tray, thus making it easier to set the fiduciary plate to the center on the radiation field on the linear accelerator. The plate had two 2-mm vertical and horizontal lines, with the minor scales in 2-cm steps. The orientation marker was a small mercury filled disk, which was inserted into the plate. Results : The geometrical structure of the lines in the plate makes it easier to correlate two different images between the simulation and port films. The marker clearly indicated the orientation of the film, for example, the anterior, posterior, left, right and various oblique orientations, without the placement of a conventional orientation marker. Also, the new orientation marker could easily be applied to the simulator by placing the small orientation marker onto the image intensifier or in front of the film/cassette holder. Conclusions : The new fiduciary plate appears to be useful in verifying the treatment fields, and the new orientation marker makes the film orientation simple, which is expected to lower the block fabrication errors.

Accuracy and reliability of stitched cone-beam computed tomography images

  • Egbert, Nicholas;Cagna, David R.;Ahuja, Swati;Wicks, Russell A.
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • Purpose: This study was performed to evaluate the linear distance accuracy and reliability of stitched small field of view (FOV) cone-beam computed tomography (CBCT) reconstructed images for the fabrication of implant surgical guides. Material and Methods: Three gutta percha points were fixed on the inferior border of a cadaveric mandible to serve as control reference points. Ten additional gutta percha points, representing fiduciary markers, were scattered on the buccal and lingual cortices at the level of the proposed complete denture flange. A digital caliper was used to measure the distance between the reference points and fiduciary markers, which represented the anatomic linear dimension. The mandible was scanned using small FOV CBCT, and the images were then reconstructed and stitched using the manufacturer's imaging software. The same measurements were then taken with the CBCT software. Results: The anatomic linear dimension measurements and stitched small FOV CBCT measurements were statistically evaluated for linear accuracy. The mean difference between the anatomic linear dimension measurements and the stitched small FOV CBCT measurements was found to be 0.34 mm with a 95% confidence interval of +0.24 - +0.44 mm and a mean standard deviation of 0.30 mm. The difference between the control and the stitched small FOV CBCT measurements was insignificant within the parameters defined by this study. Conclusion: The proven accuracy of stitched small FOV CBCT data sets may allow image-guided fabrication of implant surgical stents from such data sets.

The accuracy of linear measurements of maxillary and mandibular edentulous sites in conebeam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions

  • Ganguly, Rumpa;Ramesh, Aruna;Pagni, Sarah
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the effect of varying resolutions of cone-beam computed tomography images on the accuracy of linear measurements of edentulous areas in human cadaver heads. Intact cadaver heads were used to simulate a clinical situation. Materials and Methods: Fiduciary markers were placed in the edentulous areas of 4 intact embalmed cadaver heads. The heads were scanned with two different CBCT units using a large field of view ($13cm{\times}16cm$) and small field of view ($5cm{\times}8cm$) at varying voxel sizes (0.3 mm, 0.2 mm, and 0.16 mm). The ground truth was established with digital caliper measurements. The imaging measurements were then compared with caliper measurements to determine accuracy. Results: The Wilcoxon signed rank test revealed no statistically significant difference between the medians of the physical measurements obtained with calipers and the medians of the CBCT measurements. A comparison of accuracy among the different imaging protocols revealed no significant differences as determined by the Friedman test. The intraclass correlation coefficient was 0.961, indicating excellent reproducibility. Inter-observer variability was determined graphically with a Bland-Altman plot and by calculating the intraclass correlation coefficient. The Bland-Altman plot indicated very good reproducibility for smaller measurements but larger discrepancies with larger measurements. Conclusion: The CBCT-based linear measurements in the edentulous sites using different voxel sizes and FOVs are accurate compared with the direct caliper measurements of these sites. Higher resolution CBCT images with smaller voxel size did not result in greater accuracy of the linear measurements.

Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging (다중 분자 영상을 위한 간편한 동물 특이적 자세 고정틀의 제작)

  • Park, Jeong-Chan;Oh, Ji-Eun;Woo, Seung-Tae;Kwak, Won-Jung;Lee, Jeong-Eun;Kim, Kyeong-Min;An, Gwang-Il;Choi, Tae-Hyun;Cheon, Gi-Jeong;Chang, Young-Min;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae;Yoo, Jeong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.401-409
    • /
    • 2008
  • Purpose: Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. Materials and Methods: The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at $60^{\circ}C$ in oven overnight for hardening. Four sealed pipet tips containing $[^{18}F]FDG$ solution were used as fiduciary markers. After injection of $[^{18}F]FDG$ via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Results: Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Conclusion: Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment.