Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

다중 분자 영상을 위한 간편한 동물 특이적 자세 고정틀의 제작

  • Park, Jeong-Chan (Department of Molecular Medicine, Kyungpook National University School of Medicine) ;
  • Oh, Ji-Eun (Department of Molecular Medicine, Kyungpook National University School of Medicine) ;
  • Woo, Seung-Tae (Department of Biomedical engineering, Kyungpook National University) ;
  • Kwak, Won-Jung (Department of Molecular Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Jeong-Eun (Department of Radiation Oncology, Kyungpook National University School of Medicine) ;
  • Kim, Kyeong-Min (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • An, Gwang-Il (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Choi, Tae-Hyun (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Cheon, Gi-Jeong (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Chang, Young-Min (Department of Molecular Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Sang-Woo (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, Kyungpook National University School of Medicine) ;
  • Yoo, Jeong-Soo (Department of Molecular Medicine, Kyungpook National University School of Medicine)
  • 박정찬 (경북대학교 의과대학 분자의학교실) ;
  • 오지은 (경북대학교 의과대학 분자의학교실) ;
  • 우승태 (경북대학교 의과대학 의공학과) ;
  • 곽원정 (경북대학교 의과대학 분자의학교실) ;
  • 이정은 (경북대학교 의과대학 방사선종양학교실) ;
  • 김경민 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 안광일 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 최태현 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 천기정 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 장용민 (경북대학교 의과대학 분자의학교실) ;
  • 이상우 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실) ;
  • 이재태 (경북대학교 의과대학 핵의학교실) ;
  • 유정수 (경북대학교 의과대학 분자의학교실)
  • Published : 2008.10.31

Abstract

Purpose: Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. Materials and Methods: The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at $60^{\circ}C$ in oven overnight for hardening. Four sealed pipet tips containing $[^{18}F]FDG$ solution were used as fiduciary markers. After injection of $[^{18}F]FDG$ via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Results: Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Conclusion: Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment.

목적: 최근 들어, 분자 영상에서 다중 영상 기법이 널리 보급되고 있다. 우리는 PET/MR 융합 영상을 얻기 위해 쉽게 이용 가능한 점토와 순간 고형제를 이용하여 동물 특이적 자세 고정 틀을 제작하였다. 동물 특이적 자세 고정 틀은 동물의 고정과 재현성 있는 자세 연출이 가능하도록 한다. 여기에서 우리는 실험 동물의 틀을 제작하는데 있어 점토와 순간 고형제를 비교해 보았다. 재료 및 방법: MicroPET의 받침대와 잘 맞는 바닥이 둥근 아크릴 받침대를 먼저 제작하였다. 실험 동물은 마취 후, 자세 고정을 위해서 틀 위에 올려놓았다. 틀 제작을 위하여 순간 고형제와 점토가 사용되었다. 순간 고형제와 점토를 사용한 두 가지 경우 모두, 실험 동물의 자세 고정을 위하여 부드럽게 실험 동물을 눌러 위치를 잡았다. 위치가 잡혔으면, 쥐를 들어내고, 점토로 뜬 틀은 $60^{\circ}C$ 건조기에 넣어 두어 완전히 경화시켰다. 그리고 $[^{18}F]FDG$용액이 든 밀봉된 4개의 파이펫 팁을 기준 마커로 사용하였다. 실험 동물의 꼬리에 $[^{18}F]FDG$를 정맥 주사하여 microPET 스캔을 실시한 후, 동일한 실험동물을 순차적으로 MRI 스캔하였다. 결과: 다중 영상을 위하여 점토와 순간 고형제로 동물 특이적 자세 고정 틀을 제작하였다. MicroPET과 MRI를 통하여 기능적이고 해부학적인 영상을 얻었다. PET/MR 융합 영상은 무료로 이용 가능한 AMIDE 프로그램을 사용하여 획득할 수 있었다. 결론: 쉽게 이용 가능한 점토, 순간 고형제와 일회용 파이펫 팁을 사용하여 성공적으로 동물 특이적 자세 고정 틀을 제작할 수 있었다. 동물 특이적 자세 고정 틀 덕택으로, 적은 오차 범위 내에서 PET/MR 융합 영상을 얻을 수 있었다.

Keywords

References

  1. Cherry SR. Multimodality in vivo imaging systems: Twice the power or double the trouble? Annu Rev Biomed Eng 2006;8: 35-62 https://doi.org/10.1146/annurev.bioeng.8.061505.095728
  2. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al. A combined PET/CT scanner for clinical oncology. In. United States: PET Facility and Department of Radiology, University of Pittsburgh, Pennsylvania 15213, USA, 2000; 1369-79
  3. Boss DS, Olmos RV, Sinaasappel M, Beijnen JH, Schellens JHM. Application of PET/CT in the development of novel anticancer drugs. Oncologist 2008;13:25-38 https://doi.org/10.1634/theoncologist.2007-0097
  4. Kim JS, Rieter WJ, Taylor KML, An H, Lin W, Lin W. Selfassembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 2007;129:8962-3 https://doi.org/10.1021/ja073062z
  5. Mulder Willem JM, Koole R, Brandwijk Ricardo J, Storm G, Chin Patrick TK, Strijkers Gustav J et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 2006;6:1-6 https://doi.org/10.1021/nl051935m
  6. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 2006;45:7754-8, S7754/7751 https://doi.org/10.1002/anie.200602471
  7. Prinzen L, Miserus R-JJHM, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ et al. Optical and magnetic resonance imaging of cell death and platelet activation using Annexin A5-functionalized quantum dots. Nano Lett 2007;7:93-100 https://doi.org/10.1021/nl062226r
  8. Lee J-H, Jun Y-W, Yeon S-I, Shin J-S, Cheon J. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed 2006;45:8160-2 https://doi.org/10.1002/anie.200603052
  9. Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG et al. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed 2008;47:173-6 https://doi.org/10.1002/anie.200704392
  10. Koyama Y, Talanov Vladimir S, Bernardo M, Hama Y, Regino Celeste AS, Brechbiel Martin W et al. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 2007;25:866-71 https://doi.org/10.1002/jmri.20852
  11. Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 2006;6:1459-63 https://doi.org/10.1021/nl060765q
  12. Xu H, Baidoo K, Gunn AJ, Boswell CA, Milenic DE, Choyke PL et al. Design, synthesis, and characterization of a dual modality positron emission tomography and fluorescence imaging agent for monoclonal antibody tumor-targeted imaging. J Med Chem 2007;50:4759-65 https://doi.org/10.1021/jm070657w
  13. Cai W, Chen K, Li Z-B, Gambhir Sanjiv S, Chen X. Dualfunction probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007;48:1862-70 https://doi.org/10.2967/jnumed.107.043216
  14. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965-70 https://doi.org/10.1088/0031-9155/42/10/010
  15. Grazioso R, Zhang N, Corbeil J, Schmand M, Ladebeck R, Vester M et al. APD-based PET detector for simultaneous PET/MR imaging. Nucl Instrum Meth Phys Res 2006;569:301-5 https://doi.org/10.1016/j.nima.2006.08.121
  16. Haak GM, Christensen NL, Hammer BE. Coupling scintillation light into optical fiber for use in a combined PET-MRI scanner. Nucl Instrum Meth Phys Res 1997;399:455-62 https://doi.org/10.1016/S0168-9002(97)01016-4
  17. Woody C, Schlyer D, Vaska P, Tomasi D, Solis-Najera S, Rooney W et al. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCap small animal tomograph. Nucl Instrum Meth Phys Res 2007;571:102-5 https://doi.org/10.1016/j.nima.2006.10.039
  18. Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci 2008; 105:3705-10 https://doi.org/10.1073/pnas.0711622105
  19. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008;117:379-87 https://doi.org/10.1161/CIRCULATIONAHA.107.741181
  20. Zanzonico P, Campa J, Polycarpe-Holman D, Forster G, Finn R, Larson S et al. Animal-specific positioning molds for registration of repeat imaging studies: Comparative microPET imaging of F18-labeled fluoro-deoxyglucose and fluoro-misonidazole in rodent tumors. Nucl Med Biol 2006;33:65-70 https://doi.org/10.1016/j.nucmedbio.2005.07.011
  21. Humm JL, Ballon D, Hu YC, Ruan S, Chui C, Tulipano PK et al. A stereotactic method for the three-dimensional registration of multi-modality biologic images in animals: NMR, PET, histology, and autoradiography. Med Phys 2003;30:2303-14 https://doi.org/10.1118/1.1600738
  22. Hsu W-L, Yang C-C, Wang Z-J, Liu D-W, Yin W-H, Huang W-P et al. Correlation of PET and MRI for comparing assessments on myocardial viability. Nucl Instrum Meth Phys Res 2007;571: 461-4 https://doi.org/10.1016/j.nima.2006.10.136
  23. Rowland Douglas J, Garbow Joel R, Laforest R, Snyder Abraham Z. Registration of [$^{18}F$]FDG microPET and smallanimal MRI. Nucl Med Biol 2005;32:567-72 https://doi.org/10.1016/j.nucmedbio.2005.05.002
  24. Loening Andreas M, Gambhir Sanjiv S. AMIDE: A free software tool for multimodality medical image analysis. Mol Imaging 2003;2:131-7 https://doi.org/10.1162/153535003322556877