• 제목/요약/키워드: fibre reinforcement

검색결과 68건 처리시간 0.021초

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N.;Nxumalo, Sinenkosi P.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2022
  • The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Fibre reinforcement in a structurally compromised endodontically treated molar: a case report

  • Soares, Renita;Ataide, Ida de Noronha de;Fernandes, Marina;Lambor, Rajan
    • Restorative Dentistry and Endodontics
    • /
    • 제41권2호
    • /
    • pp.143-147
    • /
    • 2016
  • The reconstruction of structurally compromised posterior teeth is a rather challenging procedure. The tendency of endodontically treated teeth (ETT) to fracture is considerably higher than vital teeth. Although posts and core build-ups followed by conventional crowns have been generally employed for the purpose of reconstruction, this procedure entails sacrificing a considerable amount of residual sound enamel and dentin. This has drawn the attention of researchers to fibre reinforcement. Fibrereinforced composite (FRC), designed to replace dentin, enables the biomimetic restoration of teeth. Besides improving the strength of the restoration, the incorporation of glass fibres into composite resins leads to favorable fracture patterns because the fibre layer acts as a stress breaker and stops crack propagation. The following case report presents a technique for reinforcing a badly broken-down ETT with biomimetic materials and FRC. The proper utilization of FRC in structurally compromised teeth can be considered to be an economical and practical measure that may obviate the use of extensive prosthetic treatment.

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.