• 제목/요약/키워드: fibre characteristics

검색결과 99건 처리시간 0.027초

Quality assessment of mushroom (Agricus bisporus) composts during production using Near Infrared spectroscopy

  • Hss, Sharma;Kilpatrick, M;Lyons, G;Murray, J;Mellon, R
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1517-1517
    • /
    • 2001
  • Cultural conditions during production of compost, using wheat straw and chicken litter as raw materials, will affect the microbial and biochemical characteristics, leading to a wide variation in mushroom productivity. Over the past 10 years, chemical and instrumental methods, suitable for assessing compost quality have been studied in Northern Ireland. In addition, the use of near subject of investigation over the past 4 years. Previous studies have shown that NIRS can be used fer assessing quality of dried and milled composts. The aim of the current investigation is to develop NIR calibrations for key quality parameters such as dry matter, pH, nitrogen, carbon, ash, microbial population and fibre factions during the two stages of production using spectra of fresh composts. Near infrared reflectance measurements of fresh composts prepared by 6 producers were made during a two-year period. Although the spectra of fresh composts were dominated by two moisture peaks at 1450 nm and 1940 nm, good calibrations for determining moisture content, conductivity, pH, nitrogen, carbon and fibre fractions were developed. The results of quality assessment during commercial production using the calibrations will be presented and discussed.

  • PDF

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

탄소섬유로 강화된 플라스틱 적층 평판의 동특성에 관한 연구 (A study on the Dynamic Characteristics of Carbon Fibre-Reinforced Plastics Plates)

  • 김찬묵;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.137-142
    • /
    • 1990
  • 본 연구에서는 유한요소법을 사용하여 이방성으로 적층된 평판의 고유모드 를 예측하고, 이론적인 예측의 정확성을 연구하기 위해 사변 단순지지의 다 양한 각도로 적층된 정사각형 CFRP평판의 8번째 진동모드까지 실험적인 결 과와 비교하였다. 이 연구에서 사용된 모든 평판은 중앙면에 대칭이며, 이것 은 Bundling-stretching coupling을 제거하기 위해서이다. 그러나 만일 비대 칭적으로 적층된 평판이라면 이 효과를 포함한 해석이 되어야 할 것이다.

  • PDF

Engineering Polymer의 전기적 특성 (Electrical characteristics of Engineering Polymer)

  • 박재열;박성희;권오덕;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.235-238
    • /
    • 2003
  • Thermo-plastic has generally bad electrical characteristics at high temperature comparing to thermoset-plastics when the plastic apply to electrical power apparatus as an electrical insulator. To solve the problem, we study engineering plastics such as Polyamide and Polyphthalamide as a base resin. And filler of the engineering plastics is glass fiber. Electrical characteristics studied are permittivity, loss factor and breakdown strength according to temperature and frequency of measuring signal. Electrical characteristics of Polyphthalamide has good temperature and frequency dependency comparing to those of Polyamide.

  • PDF

Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy in Steers Fed Diets with Different Starch:ADF Ratios

  • Lopez-Soto, M.A.;Rivera-Mendez, C.R.;Aguilar-Hernandez, J.A.;Barreras, A.;Calderon-Cortes, J.F.;Plascencia, A.;Davila-Ramos, H.;Estrada-Angulo, A.;Valdes-Garcia, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권2호
    • /
    • pp.187-193
    • /
    • 2014
  • As a result of the cost of grains, the replacement of grains by co-products (i.e. DDGS) in feedlot diets is a common practice. This change produces diets that contain a lower amount of starch and greater amount of fibre. Hypothetically, combining feed grade urea (U) with slow release urea (Optigen) in this type of diet should elicit a better synchrony between starch (high-rate of digestion) and fibre (low-rate of digestion) promoting a better microbial protein synthesis and ruminal digestion with increasing the digestible energy of the diet. Four cannulated Holstein steers ($213{\pm}4$ kg) were used in a $4{\times}4$ Latin square design to examine the combination of Optigen and U in a finishing diet containing different starch:acid detergent fibre ratios (S:F) on the characteristics of digestive function. Three S:F ratios (3.0, 4.5, and 6.0) were tested using a combination of U (0.80%) and Optigen (1.0%). Additionally, a treatment of 4.5 S:F ratio with urea (0.80% in ration) as the sole source of non-protein nitrogen was used to compare the effect of urea combination at same S:F ratio. The S:F ratio of the diet was manipulated by replacing the corn grain by dried distillers grain with solubles and roughage. Urea combination did not affect ruminal pH. The S:F ratio did not affect ruminal pH at 0 and 2 h post-feeding but, at 4 and 6 h, the ruminal pH decreased as the S:F ratio increased (linear, p<0.05). Ruminal digestion of OM, starch and feed N were not affected by urea combination or S:F ratio. The urea combination did not affect ADF ruminal digestion. ADF ruminal digestion decreased linearly (p = 0.02) as the S:F ratio increased. Compared to the urea treatment (p<0.05) and within the urea combination treatment (quadratic, p<0.01), the flow of microbial nitrogen (MN) to the small intestine and ruminal microbial efficiency were greater for the urea combination at a S:F ratio of 4.5. Irrespective of the S:F ratio, the urea combination improved (2.8%, p = 0.02) postruminal N digestion. As S:F ratio increased, OM digestion increased, but ADF total tract digestion decreased. The combination of urea at 4.5 S:F improved (2%, p = 0.04) the digestible energy (DE) more than expected. Combining urea and Optigen resulted in positive effects on the MN flow and DE of the diet, but apparently these advantages are observed only when there is a certain proportion of starch:ADF in the diet.

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향 (Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment)

  • 김현아;손황;김승진
    • 한국의류산업학회지
    • /
    • 제17권3호
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik;Panda, Subrata K.;Kumar, Vikash;Dewangan, Hukum Chand
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.391-401
    • /
    • 2020
  • The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.

Engineering Polymer의 흡습에 따른 전기적 특성 변화 (Electrical Properties by water immersion of Engineering Polymer)

  • 박재열;박성희;권오덕;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.198-200
    • /
    • 2003
  • In this paper, electrical characteristics of EP(engineering plastic) studies for the purpose of electrical insulation materials. A base resin of the EP are Polyamide and Polyphthalamide. And filler is Glass Fibre. Electrical characteristics of EP represents volume resistivity, arc resistance and breakdown voltage according to glass fiber contents. We compare before water immersion and after water immersion. As the results of experiments, Polyphthalamide has good characteristics of insulation material rather than Polyamide as an insulator for electrical power system.

  • PDF

차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구 (The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles)

  • 김영남;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF