• Title/Summary/Keyword: fiber-mixed soil

Search Result 48, Processing Time 0.026 seconds

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

Workability Characteristics of Fiber Mixed Soil (섬유 보강 혼합토의 워커빌리티 특성)

  • Song, Gyoo Bog;Lee, Sang Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study was conducted by the slump test and the consistency test of the fiber mixed soil which is soil reinforced with fiber as a reinforced material to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establishes the work standard of the fiber mixed soil. In conclusion, in this study the slump value of the fiber mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the fiber mixed soil would be fine when it has the about 25 % water content and the wall and floor plastering work is the about 30 % ~ 35 % and the flowing and pouring work is the about 40 % water content as well as the mold compacting work is the about 20 %. There is no decreasing of the workability when the soil is reinforced by the fiber because the workability characteristics of the fiber mixed soil is similar to the one of the soil. Therefore, It is estimated that using the fiber as a reinforced material of soil would be appropriate for the construction.

Engineering Properties of Fiber Mixed Soil (섬유 혼합토의 공학적 특성)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

Anlaysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.562-568
    • /
    • 1999
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground and agrictural structures. Parameters of the model are aspect ration and volumetric ocntnet of fiber, cohesion and internal friction angle of soil, adhesiion intercept of soil and fiber. It is judged that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by linear types of fiber such as steel bar, steel fiber , natural fiber etc..

  • PDF

Analysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground. Parameters of the model are aspect ratio and volumetric content of fiber, cohesion and internal friction angle of soil, adhesion intercept and interface friction angle of soil and fiber. It is considered that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by thread types of fiber such as steel bar, steel fiber, natural fiber etc.

  • PDF

Friction Properties between Fiber-Mixed Soil and Geogrid by Shear Friction Tests (전단마찰시험에 의한 섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • 조삼덕;김진만;이광우;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.813-820
    • /
    • 2003
  • The shear friction tests using large direct shear test units were performed to evaluate the friction properties of fiber-mixed soil. The used materials and test conditions were flowing. Soils : SM and ML; mixing fibers : three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm), reinforcement : geogrid; mixing ratio:0.2% and 0.3%; degree of compaction : 85% and 95%. In the test results, the reinforcing effect of fiber mixed soil was confirmed.

  • PDF

Engineering Properties of Fiber Mixed Soil and Its Use (섬유혼합토의 공학적 특성과 활용방안)

  • Park, Young-Kon;Chang, Pyoung-Wuck;Lee, Sang-Ho;Song, Chang-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • Soil is potentially suitale alternatives for use in many environments because many of the conventional materials have been encountered to be shortage due to excessive use by human. However soil without any modifications has been found to be unsuitable for building construction materials. Soil with reinforcement are naturally an answer to these alternatives. Through recent studies about fiber mixed soil, it has been shown that. fiber is a good material to be applied to the building wall. In this study, engineering properties of fiber mixed soil are collectively shown and ideas about use of fiber mixed soil are proposed in addition to the use for building wall,.

  • PDF

Compressive Creep Properties of Reinforced Soil Mixture (보강혼합토의 압축 크리프 특성)

  • 이상호;차현주;김철영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.115-123
    • /
    • 2002
  • This study was performed to provide basic data for development and construction of reinforced soil wall that mixed with reinforcements such as calcium carbonate, monofilament fiber. In order to determine proper moisture content and mixing ratio by weight of reinforcement, Poisson's ratio and compressive strength tests for sandy soil had been conducted. Model tests for long-term behavior of reinforced soil wall were carried out to investigate the effect of reinforcement during loads and under static loads. The results of creep and model tests for sandy soil compared with clayey soil. Reinforced sandy soil mixed with calcium carbonate and cement showed brittle rupture by shear but that of mixed with monofilament fiber showed ductile rupture due to the tension force of fiber. It was shown that when age increased, creep strain of reinforced soil under sustained load approached constant values.

Friction Properties between Fiber-Mixed Soil and Geogrid (섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;An, Ju-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The factors affecting shear strength and friction characteristics of the fiber-mixed soil can be classified into engineering properties of soil; particle-size, distribution, and particle shape, physical and mechanical properties of fiber; shape, length, diameter, tensile strength, elastic modulus, friction coefficient, and mixed ratio and external factors; confined stress and compaction condition. In this study, a series of shear friction tests and pull-out tests were performed to evaluate the friction properties of fiber-mixed soil according to soil type, fiber type, fiber mixed ratio and compaction degree. The materials and test conditions used in this study are as follows. Soils: SM and ML; mixing fibers: three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm); reinforcement: geogrid; mixing ratio: 0.2% and 0.3%; degree of compaction : 85% and 95%.

  • PDF

A Study on Shear strength and Friction Properties of Fiber-Mixed Soil as Backfill Material in Reinforced Earth Wall (섬유혼합 보강토의 전단강도특성 및 마찰특성 연구)

  • 조삼덕;김진만;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.651-658
    • /
    • 2002
  • A series of experimental study are performed to evaluate the shear strength and friction properties of fiber-mixed soil as backfill material in reinforced earth wall. In order to evaluate the properties of shear strength the big-size direct shear tests are carried out and on the friction properties, the shear friction tests and the pull-out tests are performed. In the results, when the mixed ratio of the net type fiber is 0.2%, the reinforcement effect was better than the others. Also the reinforcement effect of the net type fiber was larger than that of the line type fiber.

  • PDF