• 제목/요약/키워드: fiber undulation

검색결과 5건 처리시간 0.015초

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Buckling analysis of filament wound composite cylindrical shell for considering the filament undulation and crossover

  • Guo, Zhangxin;Han, Xiaoping;Guo, Meiqing;Han, Zhijun
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.399-411
    • /
    • 2015
  • The buckling equations of filament wound composite cylindrical shell are established. The coefficients $K_{ij}$ and $L_{ij}$ of the buckling equations are determined by solving the equations. The geometric analysis and the effective stiffness calculation for the fiber crossover and undulation region are respectively accomplished. Using the effective stiffness of the undulation region, the specific formulas of the coefficients ${K^{\prime}}_{ij}$ and ${L^{\prime}}_{ij}$ of the buckling equations are determined. Numerical examples of the buckling critical loads have been performed for the different winding angles and stacking sequences cylindrical shell designs. It can be concluded that the fiber undulation results in the less effect on the buckling critical loads $P_{cr}$. $P_{cr}$ increases with the thickness-radius ratio. The effect on $P_{cr}$ due to the fiber undulation is more obvious with the thickness-radius ratio. $P_{cr}$ decreases with the length-radius ratio. The effect on $P_{cr}$ due to the fiber undulation can be neglected when the ratio is large.

새로운 주파수 선택 표면: 주파수 선택적인 직물 복합 재료 (A Novel Frequency Selective Surface: Frequency Selective Fabric Composite)

  • 이상의;김천곤
    • 한국전자파학회논문지
    • /
    • 제17권10호
    • /
    • pp.920-928
    • /
    • 2006
  • 전자파를 선택적으로 투과시킬 수 있는 섬유 강화 복합 재료를 제안하였다. 이 주파수 선택적인 직물 복합재료는 탄소 섬유와 유전 섬유를 직조하여 주기적인 패턴을 가지도록 제작된다. 먼저 주파수 선택적인 직물형 복합 재료의 전자기적 특성을 조절할 수 있는 설계인자들에 대해 살펴보고, 이후에 정사각형 패턴을 가지는 평직 복합 재료를 제작하고 이것의 전자기적 특성을 탄소 로빙의 전기 전도도, 섬유의 굴곡, 그리고 개구면 대요소 크기의 비에 대해 고찰하였다. 전기 전도도에 있어서는 섬유 체적비와 주파수 분산성에 대한 의존성을 고려하였다. 구성 재료의 물성 및 섬유 체적비는 제작된 FSFC의 전자기적 특성에 큰 영향을 주지 않았으나, 개구면 대 요소 크기의 비는 많은 영향을 주었다.

균질화기법을 이용한 WFC의 등가물성치 산출 (Computation of Equivalent Material Properties of Woven Fabric Composites Using Homogenization Technique)

  • 이진희;장지현;윤민우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.1-7
    • /
    • 1997
  • Equivalent thermal conductivities and elasticity properties of woven fabric composites are computed using homogenization technique. The computational results show that the strength and thermal conductivity linearly increase with fiber volume fraction and that the variations of undulation of fibers has little effect on equivalent material properties. Homogenization technique is proved useful in the study of woven fabric composites and may find a lot more applications in the area.

  • PDF

균질화기법을 이용한 WFC의 등가물성치 산출 (Computation of equivalent material properties of woven fabric composites using homogenization technique)

  • 장지현;윤민우;이진희
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.588-594
    • /
    • 1998
  • Reliable three-dimensional models of woven fabric composites had scarcely been proposed for their geometric complexity. Simplified models, mostly one- or two-dimensional, currently used are not considered effective enough because of their oversimplifications. In this paper, the equivalent thermal conductivities and elasticity properties of woven fabric composites are computed using homogenization technique. The computational results show that the strength and thermal conductivity linearly increase with fiber volume fraction and that the variations of undulation of fibers has little effect on equivalent material properties. Homogenization technique is proved useful in the study of woven fabric composites and may find a lot more applications in the area.