• Title/Summary/Keyword: fiber shape

Search Result 839, Processing Time 0.029 seconds

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

Histological characteristics of newly formed cementum in surgically created one-wall intrabony defects in a canine model

  • Park, Jung-Chul;Um, Yoo-Jung;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • Purpose: Periodontal regenerative therapies for defects created by severe periodontitis are mainly focused on bone regeneration. Although cementum regeneration needs to be better understood, it is believed to play an important role in periodontal regeneration. The first step toward a full understanding of cementum regeneration is to compare repaired cementum to pristine cementum. This study, which used histological techniques, was designed to focus on cementum regeneration and to compare pristine cementum to repaired cementum after surgical procedures with 8 and 24 week healing periods in a canine model. Methods: Buccal and lingual mucoperiosteal flaps of 10 beagle dogs were surgically reflected to create critical-sized defects. Intrabony one-wall defects, of which dimension is 4 mm width and 5 mm depth, were made at the distal aspect of mandibular second premolars and the mesial aspect of mandibular fourth premolars in the right and left jaw quadrants. Animals were sacrificed after 8 and 24 weeks post-surgery for histological specimen preparation and histometric analysis. Results: The repaired cementum was composed mostly of acellular cementum and cellular mixed fiber cementum and was thicker in the apical area than in the coronal area. The acellular cementum of the supracrestal area appeared to be amorphous. The newly formed cellular cementum was partially detached from the underlying circumpulpal dentin, which implied a weak attachment between new cementum and dentin, and this split was observed to a lesser extent in the 24 week group than in the 8 week group. The vertical height of the repaired cementum was greater in the 24 week group than in the 8 week group. Conclusions: Within the limitations of this study, we can conclude that repaired cementum after root planing was mainly acellular cementum and cementum tissue that matured to a shape similar to pristine cementum as the healing progressed from 8 to 24 weeks.

The Heavy Metals and Size Distribution of Respirable Suspended Particulate Matter at Sungnam City (성남시 대기정유분새중 호흡성 분여에서 중금속의 농도 및 입경분포)

  • 권우택;유영식
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1994
  • Sungnam city, as a major satellite town, is located in the southeast of Seoul. Atmospheric conditions are so stable that air pollutants from various emissions are tend to resist change because Sungnam city is located in the Namhansansung valley. The industrial distribution of Sungnam city are composed of various manufactories such as foods, fibers, chemicals, machinery and electronics etc. The heavy metal concentrations and size distribution are the most important parameters influencing among the way in which respirable suspended particulate matter interact with the human respiratory system. Respirable suspended particulate matter was collected on glass fiber filters from April 1993 to February 1994 according to particle size using Anderson sampler during 10 days per month at Sungnam city. 6 heavy metals, Fe, Zn, Pb Mn, Cu and Cd, were analyzed by particle size with atomic absorption spectrophotometry . The results could be summarized as follows: 1. The annual arithmetic mean concentration of total suspended particulate was 116.3$\mu $g/m$^{3}$ m', seasonal variation was the highest in spring season(196.5$\mu $g/m$^{3}$) and the lowest in Summer Season(72.9$\mu $g/m$^{3}$). 2. The ratio of airborne particulate concentrations respirable to nonrepairable( Res/Non- Res) of annual arithmetic mean value was 5.8'1, seasonal variation was highest in the spring season(6.3 : 1) and lowest in the summer season(4.6 : 1). 3. During the spring season the shape of the size distribution was trimodal which showed peaks at 3 size groups, which were below of 0.43$\mu $m, 3.3∼4.7$\mu $m and above of 11.0$\mu $g/m$^{3}$ respectively. 4. Respirable suspended particulate matter concentrations of Zn, Pb Cu and Cd were the highest in below of 0.43$\mu $m as follows; 0.517$\mu $g/m$^{3}$, 0.411 $\mu $g/m$^{3}$, 0.062$\mu $g/m$^{3}$ and 0.0310$\mu $g/m$^{3}$ , respectively, Fe and Mn were the highest in the particle size range of 4.7 ∼ 7.0$\mu $m as follows; 2.504$\mu $g/m$^{3}$ and 0.095$\mu $g/m$^{3}$, respectively. 5. The Pt Cd, Zn, Cu, Fe and Mn concentrations of annual arithmetic mean value respirable to non- respirable( Res/Non- Res ) were 33.65, 19.27, 17.74, 10.54, 3.20 and 5.20, respectively.

  • PDF

Optimum Concentration of Supply Nutrient Solution in Hydroponics of Sweet Pepper using Coir Substrates (코이어 배지를 이용한 착색단고추 수경재배 시 적정 급액농도)

  • Kim, Ho-Cheol;Cha, Seung-Hoon;Kim, Chul-Soo;Lee, Hye-Jin;Lee, Yong-Beom;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.210-214
    • /
    • 2008
  • This experiment was carried out investigation of optimum concentration of supply nutrient solution in hydroponics of sweet pepper using coir substrates (coconut dust fiber=70% : 30%, v/v). During the growing period, it was found out that the electric conductivity (EC) would increase in proportion to the supply nutrient concentration but it was in inverse proportion to the moisture content. The pH of drainage was stable, while EC was high showing EC $7.3\;dS{\cdot}m^{-1}$ in EC $4.0\;dS{\cdot}m^{-1}$ of supply nutrient concentration. Also, standard deviation and coefficient of variation were high. Plant length was no difference by the supply nutrient concentration. Photosynthesis rate was generally high in supply nutrient concentration EC$4.0\;dS{\cdot}m^{-1}$. Fruit weight was heavy in supply nutrient concentration EC $4.0\;dS{\cdot}m^{-1}$, fruit shape was close to a regular square in supply nutrient concentration EC $3.5dS{\cdot}m^{-1}$.

Comparison on the Morphology, General Composition, Elemental Composition and Mineral Contents of Phellinus linteus, Phellinus baumii and Phellinus gilvus (Phellinus linteus, Phellinus baumii 및 Phellinus gilvus의 형태, 일반성분, 원소분석 및 무기성분 함량의 비교)

  • Bae, Jae-sung;Jang, Kwang-ho;Rhee, Man-hee;Jeong, Kyu-shik;Jo, Woo-sik;Choi, Sung-guk;Kim, Young-hoan;Park, Seung-chun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.423-428
    • /
    • 2003
  • The purpose of this study is to compare the morphology, general composition, elemental composition and mineral contents of Phellinus linteus, Phellinus baumii and Phellinus gilvus. In the scanning electron microscopy, P. gilvus and P. linteus had a similar shape. In the elemental composition, all of the three Phellinus spp. showed similar percent for the analyzed components. In the general composition, the water content of P. linteus. P. baumii and P. gilvus were 13%, 15% and 10%, respectively. The dietary fiber of three Phellius spp. showed more than 30%. The range of vitamin C and protein content was 1.5-2.1 g% and 3.63-3.73 g%. respectively. In mineral analysis, P. baumii of the three Phellinus spp. has the highest calcium concentration (1,135 ppm). From the above results, P. linteus. P. baumii and P. gilvus did not show any differences in the general composition and elemental composition.

Cellulose Structures of Primary and Secondary Tissues in Pinus densiflora S. et Z. (소나무재의 1차조직과 2차조직 세포벽 중의 셀룰로오스 구조)

  • Kim, Nam-Hun;Lee, Kee-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.60-67
    • /
    • 2001
  • The microscopic characteristics and cellulose structures of primary and secondary tissues in Pinus densiflora S. et Z. were examined. Cells of primary tissue in cross section showed an irregular arrangement and round shape. Fiber lengths were 200 to $250{\mu}m$ in primary tissue, and 1,500 to $1,600{\mu}m$ in secondary tissue. Cell diameters in primary tissue were larger than those in secondary tissue; 40 to $50{\mu}m$ in former and 10 to $20{\mu}m$ in latter. Crystallite width and d-spacing of (200) in both tissues did not show any significant differences. However, crystallinity indices by Segal's method showed significant differences as 23% in primary tissue and 35% in secondary tissue. In the orientation of cellulose microfibril, primary tissues had a random pattern, whereas, secondary tissues presented an oriented pattern with 20 to 30 degree. The cellulose crystalline of primary tissue was easily transformed into cellulose II by mercerization, but that of secondary tissue hardly transformed. It is considered that the difference of crystal transformation in both tissues could be caused by the difference of lignification.

  • PDF

Bandwidth Analysis of High-order Pulse for the Transmission of Ultrashort Laser Pulses (극초단펄스 전송을 위한 고차원펄스의 스펙트럼 대역 분석)

  • 전진성;조형래;오용선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.237-242
    • /
    • 1999
  • In this paper, we analyze transmission characteristics of ultrashort laser pulses using the property of high-order pulses which are systematically obtained following their orders. The high-order pulses are easily derived from a modified PRS system model. But we make clear they are very useful to cover wider area and more accurate transmission characteristics of ultrashort pulses than Gaussian or Sech pulse approximations used conventionally. This may be based on the fact that the spectra and bandwidths of the high-order pulses are beautifully related to their orders. first modifying the generalized PRS system model, we propose a new model for deriving any type of high-order pulse. And we offer a novel analysis method of ultrashort pulse transmission which has any shape and FWHM, using the proposed model. In addition, by fixing the pulse range $\tau$=1(ps) and varying the order of the pulse from n:1 to n=100, we obtain spectra of ultrashort pulses with 1(ps)-150(fs) FWHM's, which are widely used in fiber communications. As a one-step further, we derive PSD's of their pulse trains when they are applied to Unipolar signaling scheme. These PSD's are decided in the range of possible pulse intervals. All of these results are not only coincided with some conventional experimental works but also will be applied to any pioneering ultrashort pulse in the future.

  • PDF

Microparticulation/Air Classification of Rice Bran: Characteristics and Application (초미세분쇄/공기분급을 이용한 탈지미강 분획의 특성과 응용)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.769-774
    • /
    • 1993
  • Defatted rice bran was microparticulated using fluidized bed opposed jet mill and air-classified at different air classifying wheel speed (ACWS) in Turboplex classifier. The median particle size and the standard deviation decreased, and concomitantly the specific surface area increased generally with increasing ACWS. The protein, fat and ash contents of the recovered rice bran increased with ACWS. The contents of minerals; magnesium, zinc, iron and manganese; increased positively with ACWS. The phytic acid content, however, was slightly higher at middle ACWS. The dietary fiber content was highest in the ACWS 15,000 rpm fraction showing 31.47%. Higher ACWS resulted in lighter colored powder. The water holding capacity (WHC) showed the maximum value at ACWS 12,000 rpm and decreased with increasing ACWS, while the oil holding capacity (OHC) increased with ACWS. The rheological property of the microparticulated rice bran/water suspension fitted to the linear model. The yield stress and viscosity of the suspension increased with ACWS. The shape of microparticulated rice bran at ACWS 21,000 rpm was spherical, and the median particle size was $3.7{\mu}m$. When cake was prepared with substitution of microparticulated rice bran at 5%, the cake height and volume increased remarkably.

  • PDF

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.