• Title/Summary/Keyword: fiber reinforced plastic (FRP)

Search Result 179, Processing Time 0.026 seconds

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP (FRP로 보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.101-111
    • /
    • 1998
  • This study presents test results of RC beams strengthened by carbon fiber sheet(CFS), carbon fiber reinforced plastics(CFRP) or glass fiber reinforced plastics(GFRP) for increasing shear resistance. Nineteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials(CFS, GFRP, CFRP), shear-strengthening methods(wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The test results show that shear-damaged RC beams strengthened by FRP(CFS, GFRP, CFRP) have more improved the shear capacity. The mathematical model based on plastic theory was also developed to predict shear strength of shear-damaged RC beams strengthened by FRP. The predictions using the mathematical model. are agreed with the observations from the observed shear strengths for 19 test beams.

An Experimental Study on the Mechanical Properties of Hybrid Fiber Reinforced Plastic(FRP) Rebar for Concrete Structure (콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 물성에 관한 실험적연구)

  • 배시연;신용욱;한길영;이동기;심재기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.63-66
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and l0mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

A Study on the Manufacturing of Hybrid Fiber Reinforced Plastic Rebar Using In-Line Braiding and Pultrusion (라인 브레이딩 펄트루젼을 이용한 하이브리드 섬유강화 복합재료 리바 제작에 관한 연구)

  • 신용욱;한길영;이동기;심재기;오환교
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.57-62
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid. it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and 10mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

Combustion Characteristics of Fiber Reinforced Plastic by Cone Calorimeter (콘칼로리미터를 이용한 섬유강화플라스틱(FRP)의 연소특성)

  • 이근원;김관응;이두형
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • This study describes to assess combustion characteristics of fiber reinforced plastic (FRP) that is used an elements of building or structure in workplace. The combustion characteristics of the fiber reinforced plastic were carried out using by a Cone Calorimeter according to ISO 5660 standard. As the results of this study, the time to ignition and heat release rate of the fiber reinforced plastic was differ with heat flux of irradiance and content of flame retardant agent. The heat release rate of the fiber reinforced plastic was increased with increasing heat flux of irradiance. The flashover propensity of the fiber reinforced plastic using time to ignition and peak heat release rate was examined according to classification method by R.V. Petrella.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

Experimental Study of Flexural Behavior of Steel Beam Strengthened with the Fiber Reinforced Polymer Plastic(FRP) Strips (섬유보강플라스틱(FRP) 스트립으로 보강한 철골보의 휨거동에 관한 실험적연구)

  • Choi, Sung Mo;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • This paper presents the experimental results of flexural behavior of steel beam strengthened with fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Four H beams were fabricated strengthened with aramid strips and carbon strips and one control specimen were also fabricated. Among them two specimens were strengthened with partial length. The H-beams had two types of failure mode, depending on the length of the FRP strips:(1) strip debonding in beams with partial length reinforcement and (2) strip rupture in beams with full length reinforcement. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.

Application Technologies of Fiber Reinforced Composites on the Building Structure (섬유복합재료(FRP)의 건설 적용 사례 연구 (건축편))

  • Han Bog-Kyu;Kwon Young-Jin;Park Sung-Woo;Hong Geon-Ho
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.37-42
    • /
    • 2006
  • In the past, the technology of strengthening structures using FRP composites was still in its infancy, with very few publications on the technology available. However, recently strengthening of Reinforced concrete (RC) and other structures using advanced fibre-reinforced polymer/plastic(FRP) composites has become very popular in the last few years. As the well-known advantages of FRP composites including both good corrosion resistence and ease for site handling due to their light weight, also its design methods have been ensured the safe and economic use of this new technology, FRPs have been used widely and demonstrated in the field of aero industries etc. The purpose of this paper is to report the examples of the many diverse applications of Fiber Reinforced Plastic in construction materials of structures.

Compression Strength Test of FRP Reinforced Concrete Composite Pile (FRP-콘크리트 합성말뚝 시편의 압축강도실험)

  • Lee, Young-Geun;Choi, Jin-Woo;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • In this paper, we present a part of results to develop new type hybrid FRP-concrete composite pile (i.e., concrete filled fiber reinforced plastic circular tubes, hybrid CFFT, HCFFT). The purpose of this paper is to evaluate compressive loading capacity through compressive strength test. Before compressive strength test of HCFFT, we investigated mechanical properties of pultruded fiber reinforced plastic (PFRP) and filament winding fiber reinforced plastic (FFRP). For estimating the compressive strength of HCFFT, uni-axial compression strength tests of HCFFT compression members were conducted. The test variables are compressive strengths of concrete and thickness of FFRP. In addition, uni-axial compression strength tests of concrete filled fiber reinforced plastic circular tube (CFFT) except PFRP members were conducted. The test variable in the test is thickness of FFRP. From the test result, the compressive strength of the HCFFT in larger than compressive strength of CFFT as much as 47%. It can be observed that the uni-axial compressive strength of the HCFFT increased if the concrete strength and the thickness of exterior filament winding FRP tube increased. In addition, the finite element analysis result is compared with the experimental result. The difference between the experimental and FEM results is in the range of 0.14% to 17.95%.

Characteristics of Kevlar-Glass fiber reinforced plastic for Concrete Structure by the Braidtrusion process (브레이드 투루젼법에 의한 콘크리트 구조물용 케블라-유리섬유 강화 복합재료 리바 특성)

  • 최명선;곽상묵;배시연;이동기;심재기;한길영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.48-52
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for Concrete Structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility Characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at Ø3mm and Ø10mm nominal diameters using the braidtrusion process. Tensile and bending specimens from these bars were tested and compared with behavior of stress-strain of steel bar and GFRP rebar

  • PDF

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.