• 제목/요약/키워드: fiber reinforced cementitious composites (FRCC)

검색결과 15건 처리시간 0.024초

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • 제4권2호
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.

Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach

  • Sonebi, Mohammed;Abdalqader, Ahmed;Fayyad, Tahreer;Amaziane, Sofiane;El-Khatib, Jamal
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.347-360
    • /
    • 2022
  • Fiber-reinforced cementitious composites (FRCC) have emerged as a response to the calls for strong, ductile and sustainable concrete mixes. FRCC has shown outstanding mechanical properties and ductility where special fibres are used in the mixes to give it the strength and the ability to exhibit strain hardening. With the possibility of designing the FRCC mixes to include sustainable constituents and by-products materials such as fly ash, FRCC started to emerge as a green alternative as well. To be able to design mixes that achieve these conflicting properties in concrete, there is a need to understand the composition effect on FRCC and optimize these compositions. Therefore, this paper aims to investigate the influence of FRCC compositions on the properties of fresh and hardened of FRCC and then to optimize these mix compositions using factorial design approach. Three factors, water-to-binder ratio (w/b), mineral admixtures (total of fly ash and metakaolin by cement content (MAR)), and metakaolin content (MK), were investigated to determine their effects on the properties of fresh and hardened FRCC. The results show the importance of combining both FA and MK in obtaining a satisfactory fresh and mechanical properties of FRCC. Models were suggested to elucidate the role of the studied factors and a method for optimization was proposed.

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

하이브리드형 단섬유보강 시멘트복합재료의 개발에 관한 실험적 연구 (An Experimental Study on the Development of Hybrid Discontinuous Fiber Reinforced Cementitious Composite)

  • 김영덕;조봉석;김재환;김용로;윤현도;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.57-60
    • /
    • 2003
  • Generally, normal concrete has the disadvantages of low tensile strength, low ductility and volume instability. To improve its performance, fiber reinforced cimentitious composite(FRCC) have been development. These composites are composed of cement, sand, water, a small amount of admixtures, and an optimal amount of fiber like synthetic fiber and steel fiber. This research investigates influence of sand, hybrid fiber and fiber volume fraction, and reports the test results of mechanical properties, fracture behavior and failure pattern of the FRCC. Our experiment was observed that sand mixed FRCC has lower compressive strength and higher bending strength than no sand mixed FRCC, and more steel fiber mixed FRCC has higher compressive strength and bending strength. Hybrid FRCC of steel and polypropylene had superior properties than FRCC of polypropylene only in same fiber volume fraction.

  • PDF

Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement

  • Liang, Xingwen;Xing, Pengtao
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.261-271
    • /
    • 2018
  • Fiber reinforced cementitious composites (FRCC) materials that exhibit strain-hardening and multiple cracking properties under tension were recently developed as innovative building materials for construction. This study aims at exploring the use of FRCC on the seismic performance of coupling beams with conventional reinforcement. Experimental tests were conducted on seven FRCC precast coupling beams with small span-to-depth ratios and one ordinary concrete coupling beam for comparison. The crack and failure modes of the specimens under the low cycle reversed loading were observed, and the hysteretic characteristics, deformation capacity, energy dissipation capacity and stiffness degradation were also investigated. The results show that the FRCC coupling beams have good ductility and energy dissipation capacities compared with the ordinary concrete coupling beam. As the confinement stirrups and span-to-depth ratio increase, the deformation capacity and energy dissipation capacity of coupling beams can be improved significantly. Finally, based on the experimental analysis and shear mechanism, a formula for the shear capacity of the coupling beams with small span-to-depth ratios was also presented, and the calculated results agreed well with the experimental results.

강섬유 종류에 따른 시멘트 복합체의 전기전도도 측정에 대한 실험적 연구 (An Experimental Study on the Measurement of Electrical Conductivity of Cementitious Composites According to the Type of Steel Fiber)

  • 이예찬;김규용;남정수;이상규;서동균;유하민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.191-192
    • /
    • 2020
  • The purpose of this study is to measure the electrical conductivity of cementitious composites as an early step to obtain shielding performance by mixing various type of steel fiber into cementitious composites, the main building material of protection facility, to shield electromagnetic pulse (EMP) damage. Fiber such as conductors as amorphous metallic fiber, hooked steel fiber, and smooth steel fiber are mixed into cementitious composites to give electrical conductivity and measure the impedance of concrete using LCR meter. By doing this, the electrical conductivity of each type of steel fiber reinforced cementitious composites (FRCC) is compared.

  • PDF

섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석 (Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite)

  • 이방연;박준형;김윤용
    • Composites Research
    • /
    • 제23권3호
    • /
    • pp.50-57
    • /
    • 2010
  • 섬유 보강 시멘트계 복합재료의 성능 예측 및 평가에 있어서 중요한 영향을 미치는 섬유 분포 특성을 정량적으로 평가하기 위해서는 복합재료의 단면 이미지에서 섬유를 정확히 검출하여야 한다. 이 논문은 형광원리를 이용하여 합성섬유를 매트릭스로부터 개별적으로 검출하기 위한 기초 연구로써 섬유 보강 시멘트계 복합재료 중의 하나인 ECC에 일반적으로 사용되는 PVA 섬유, PET 섬유, PE 섬유, 그리고 PP 섬유의 형광특성을 분석하였다. 또한 하이브리드 된 경우 합성섬유들 간의 상대 형광 광도값의 차이를 비교하여 종류별로 구분하기 위한 최적의 파장대를 선정하였으며, 그 파장대에서 두 분류대상을 구별할 수 있는 최적의 경계값을 통계적 방법을 이용하여 산출하였다. 또한 형광 현미경을 이용하여 각 섬유를 촬영하여 상대적인 밝기값을 비교하였다.

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.