• Title/Summary/Keyword: fiber orientation distribution

Search Result 86, Processing Time 0.025 seconds

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Influences of hygrothermal environment and fiber orientation on shear correction factor in orthotropic composite beams

  • Soumia Benguediab;Fatima Zohra Kettaf;Mohammed Sehoul;Fouad Bourada;Abdelouahed Tounsi;Mohamed Benguediab
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.151-165
    • /
    • 2023
  • In this study, a simple method for the determination of the shear correction factor for composites beam with a rectangular cross section is presented. The plane stress elasticity assumption is used after simplifications of the expression of the stress distribution in the beam. The different fiber orientation angle and volume fraction are considered in this work. The studied structure is subjected to various loading type (thermal and hygrothermal). The numerical results obtained show that there is a dependence of the shear coefficient on the orientation of the fibers. The evolution of the shear correction factors depends not only on the orientation of the fibers and also on the volume fraction and the environment. the advantage of this developed formula of the shear correction factor is to obtain more precise results and to consider several parameters influencing this factor which are neglected if the latter is constant.

Uniaxial Tension Behavior According to the Distribution of Fiber Orientation (섬유 분포에 따른 ECC 1축 인장 거동)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jin-Keun;Nam, Kwan-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.531-532
    • /
    • 2009
  • This paper presents crack spacing which quantitatively considers the fiber distribution and prediction of uniaxial tensile behavior of ECC on the basis of crack spacing and fiber distribution. The predictions exhibit similar tensile stess-strain curves to the test results within 10% error.

  • PDF

Fiber Distribution Characteristics and Flexural Performance of Extruded ECC Panel (압출성형 ECC 패널의 섬유분포 특성과 휨 성능)

  • Lee, Bang-Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kwon, Young-Jin;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.573-580
    • /
    • 2009
  • This paper presents the mix composition, production method, and curing condition applied to the extruded ECC(Engineered Cementitious Composite) panel which are able to exhibit multiple cracking and potential pseudo strain-hardening behavior. In addition to the production technique of extruded ECC panel, the effect of fiber distribution characteristics, which are uniquely created by applying extrusion process, on the flexural behavior of the panel is also focussed. In order to demonstrate fiber distribution, a series of experiments and analyses, including image processing/analysis and micro-mechanical analysis, was performed. The optimum mix composition of extruded ECC panel was determined in terms of water matrix ratio, the amount of cement, ECC powder, and silica powder. It was found that flexural behavior of extruded ECC panel was highly affected by the slight difference in mix composition of ECC panel. This is mainly because the difference in mix composition results in the change of micro-mechanical properties as well as fiber distribution characteristics, represented by fiber dispersion and orientation. In terms of the average fiber orientation, the fiber distribution was found to be similar to the assumption of two dimensional random distribution, irrespective of mix composition. In contrast, the probability density function for fiber orientation was measured to be quite different depending on the mix composition.

Measurement of Residual Stress Distribution in Injection-Molded Short Fiber Composites (단섬유 복합재료 사출성형물의 잔류응력 측정)

  • 김상균;이석원;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.61-63
    • /
    • 2001
  • Residual stress distribution in injection-molded short fiber composites was determined using layer-removal method. Polysterene with 3 vol% carbon fibers was injection-molded into the tensile specimen. With milling machine layer-removal process was conducted and the curvature data were acquired. Treuting and Read analysis which is assuming isotropic material, and White analysis considering anisotropy due to the fiber orientation were used to calculate residual stress of the flow direction through the thickness direction and compared with each other.

  • PDF

The Study of Hanji and Washi Fiber Orientation using Image analysis (Image analysis에 의한 한지와 화지의 섬유 배향성 연구)

  • Han, Yoon-Hee;Enomae, Toshiharu;Isogai, Akira
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.11a
    • /
    • pp.89-96
    • /
    • 2006
  • To estimate the manufacturing district and generation of ancient paper as a cultural property, fiber orientation is one of the criteria. Image analysis using fast Fourier transform with suitable modifications was demonstrated to be an effective means to determine angle and intensity of fiber orientation as a nondestructive method. Binarization process of microscopic images of paper surface and precise calculation for average Fourier coefficients as an angular distribution by linear interpolation were newly introduced in the procedures to improve the accuracy. This analysis method was applied to digital optical micrographs of paper surfaces. Korea and Japanese traditional hand making papers were well distinguished. Korea and Japanese papers made in the traditional ways showed its own characteristic orientation behavior in accordance with the motion of a bamboo wire.

  • PDF

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades (타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구)

  • Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.157-163
    • /
    • 2018
  • This study is aimed at controlling the fiber orientation and improve the fiber distribution in fiber-reinforced cement composites using blades that can be placed inside the existing nozzles. To optimize the blade parameters, multi-physics finite element analysis was performed that could account for the flow of the cementitious matrix material, the movement of the entrained fibers, and the interactions with the nozzle. As a result, this study defined the blade distance, length, and position as a function of the fiber length to be used in the field. The blades with a distance from 1.2 to 2.4 times the fiber length and length from 4 to 8 times the fiber length, as well as located at below 14 times the fzfiber length from the nozzle exit maintained the fiber orientation angle less than $5^{\circ}$. In addition, the blade-type nozzle proposed in the study can be attachable and detachable to the conventional casting equipment, and thus it can provide the usability and convenience in practical applications.

Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites (금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I))

  • 강충길;김남환;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

Structure Variation of Polypropylene Hollow Fiber Membrane with Operation Parameters in Stretching Process (연신 공정 조업변수에 따른 폴리프로필렌 중공사막의 구조 변화)

  • Lee Gyu-Ho;Kim Jin-Ho;Song Ki-Gook;Kim Sung-Soo
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Hybrid process of thermally-induced phase separation and stretching was developed for the preparation of microporous polypropylene hollow fiber membranes. Precursor for stretching was prepared by using soybean oil as a diluent and benzoic acid as a nucleating agent far the sphenlite control and it was stretched far the micrporous hollow fiber membrane. The effects of stretching ratio and deformation rate for stretching process were investigated. Increase of stretching ratio resulted in the greater pore size with nonuniform size distribution. Higher deformation rate also increaser the pore size with uniform size distribution. Stretching ratio was closely related with the orientation of polymer chain and increased the mechanical strength of the fiber. Increase of deformation rate had little effects on the orientation of crystalline phase, and decreased the orientation of amorphous phase which caused the decrease of tensile strength of the fiber and broke the micro-fibrils connecting spherulites to form a circular pore shape.