• Title/Summary/Keyword: fiber orientation distribution

Search Result 86, Processing Time 0.022 seconds

Fiber Orientation distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites (섬유강화 복합재료 사출성형품의 섬유배향상태)

  • Lee, J.J.;Kim, J.W.;Kim, H.;Han, G.Y.;Sim, J.K.;Lee, D.G.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.76-81
    • /
    • 2004
  • Injection molding is the most widely used process fir the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result. the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experientially. Using the image processing method, the fiber orientation distribution of welding pars in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

  • PDF

Fiber Orientation Distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료 사출성형품의 섬유배향상태)

  • Lee Dong-Gi;Sim Jea-Ki;Kim Jin-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • Injection molding is the most widely used process for the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of welding parts in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP (FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구)

  • Lee Dong-Gi;Sim Jea-Ki;Kim Jin-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

Flow-dependent Fiber Orientation Distribution and Its Effect on the Tensile Behavior of Intra High Performance Cementitious Composites (유동에 따른 섬유 방향성 분포특성 변화가 초고성능 시멘트 복합체의 인장거동에 미치는 영향)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.483-484
    • /
    • 2010
  • In this paper, it was intended to understand the effect of the fiber orientation distribution on the tensile behavior of Intra High Performance Cementitious Composites (UHPCC) and to estimate flow-dependent fiber orientation distribution and the corresponding tensile behavior of UHPCC.

  • PDF

Accuracy Comparison between Intensity Method and Count Method in Measurement of Planar Orientation of Fibers Using Image Processing (화상 처리를 이용한 섬유 배향각 분포 측정에서 농도법과 카운트법의 정확도 비교)

  • Lee, S.D.;Kim, H.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.357-364
    • /
    • 1998
  • To investigate accuracies between intensity method and count method for measurement of the fiber orientation distribution, fiber orientation function is derived by drawing simulation figure for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method and count method are compared with the calculated ones from simulation figures. The results show that measurement accuracy of fiber orientation angle distribution obtained by count method is by 4% higher than that by intensity method.

  • PDF

Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular has been made using the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Fourier Transform) was used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, the fiber orientation has a significant influence on the anisotropical behavior of nonwoven. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different load transfer mechanism according to the applied macroscopic tensile direction.

Fiber orientation in the processing of polymer composites

  • Chung, Du-Hwan;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.175-188
    • /
    • 2002
  • We review the modeling and simulation of fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Various closure approximation models to express higher order tensor in terms of Bower order tensors are reviewed. Rheology of fiber suspensions, multiple fiber-fiber interaction and numerical technique for the prediction of fiber orientation are also considered for concentrated situations.

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet (GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향)

  • Lee, Jung-Ju;Lee, Dong-Gi;Sim, Jae-Ki;Jo, Seon-Hyung;Kim, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.