• Title/Summary/Keyword: fiber elements

Search Result 427, Processing Time 0.021 seconds

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

Fiber optic interferometric electric field sensor with La-doped PMN/PT PMN/PT[0.9 Pb$(Mg_{1/3}Nb_{2/3})O_3-0.1\;PbTiO_3$] electrostrictive ceramics (PMN/PT[0.9 Pb$(Mg_{1/3}Nb_{2/3})O_3-0.1\;PbTiO_3$에 La이 첨가된 광섬유 전왜변환기를 이용한 간섭계형 광섬유 전계센서의 특성분석)

  • 강원석;이영탁;강현서;정래성;이경식;장현명
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.162-166
    • /
    • 1996
  • We report a fiber optic interferometric electric field sensor that utilizes electrostrictive ceramics-1%, 2%, 3%, La-doped 0.9MN/0.1PT, respectively-as the transducing elements. It is also experimentally observed that 3% La-doped PMN/PT among the three elements has the largest electrostrictive coefficient $M=3.87{\times}10^ {-16}(m/V)^2$ at 3.38 kHz and displays small hysteresis. The optical fiber sensor with the 3% La-doped PMN/PT exhibits minimum detectable field of 2.08(V/m)/ $\sqrt{Hz}$ and has a good linearity over the dynamic range 40 dB.

  • PDF

Model verification and assessment of shear-flexure interaction in pile foundations

  • Lemnitzer, Anne;Nunez, Eduardo;Massone, Leonardo M.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.141-163
    • /
    • 2016
  • Fiber models have been developed and applied to various structural elements such as shear walls, beams and columns. Only scarcely have fiber models been applied to circular foundation systems such as cast in drilled holes shafts (CIDH). In pile foundations with constraint head boundary conditions, shear deformations can easily contribute to the lateral pile response. However, soil structure interaction formulations such as the p-y method, commonly used for lateral pile design, do not include structural shear deformations in its traditional derivation method. A fiber model that couples shear and axial-bending behavior, originally developed for wall elements was modified and validated on circular cross sections (columns) before being applied to a 0.61 m diameter reinforced concrete (RC) pile with fixed head boundary conditions. The analytical response was compared to measured test results of a fixed head test pile to investigate the possible impact of pile shear deformations on the displacement, shear, and moment profiles of the pile. Results showed that shear displacements and forces are not negligible and suggest that nonlinear shear deformations for RC piles should be considered for fixed-head or similar conditions. Appropriate sensor layout is recommended to capture shear deformation when deriving p-y curves from field measurements.

A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites (유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구)

  • Gyuhyeong Kim;Donghyuk Cho;Juwon Lee;Sangdeok Kim;Cheolmin Shin;Jeong Whan Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs

  • Kim, Naeun;Kim, Young Hee;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1067-1081
    • /
    • 2015
  • This study investigates structural and mechanical behaviors of RC (Reinforced concrete) beams strengthened with tapered CFRP (Carbon fiber reinforced polymer) sheets having various configurations. Toward this goal, experiments are performed on RC beams strengthened with four layers of CFRP sheets and each layer of the CFRP is prepared to have different length. Experimental results show that tapered CFRPs have better strengthening effect than non-tapered CFRP sheets and maximum loads of the beams with tapered CFRPs are governed by the length of first CFRP layer rather than total length of CFRP layers. In addition, analyses are performed using FE (Finite Element) models including cohesive elements to predict debonding behaviors between FRP and concrete elements. The predicted results from the FE models show good agreement with the experimental results.

Development Changes of the Secondary Xylem Elements in Aristolochia manshuriensis Komarov (등칡의 2기목부요소의 발생학적 변이)

    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.319-325
    • /
    • 1998
  • The developmental changes occuring in the secondary xylem of Aristolochia manshuriensis Komarov have been studied in different ages of vine stems. A. manshuriensis possesses typical storeyed cambium comprising both vertically elongated fusiform initials and almost isodiametric ray cell initials. Stems of A. manshuriensis have wide rays that make the secondary xylem appear dissected as other vine types. The length of vessel member and fiber remained relatively constant throughout the secondary growth. However, vessel diameter increases with the increasing age of stem till the cell reaches their maximum limit and later more or less stabilize in diameter while number of vessel per $\textrm{mm}^2$ is vice versa. Width and relative proportion of ray to axial elements gradually increased with the increasing age of stem and later remained relatively constant.

  • PDF

Alkali-Swollen Morphology of Native Cellulose Fibers

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.16-22
    • /
    • 2007
  • The behavior of ramie fibers and some wood elements in the early stage of alkali swelling was examined. When the fibers were treated with alkali solution, they significantly shrank in length and swelled in wall thickness. Ramie fibers showed a shrinkage averaging 23% in length and a swelling averaging 92% in width in 100 seconds treating time. Dimensional changes showed different fashion in each element of woods. The tracheids of latewood especially in Pinus densiflora and Larix kaempferi woods swelled intensively and showed balloon swelling, but in the case of Cryptomeria japonica, it was hardly observed. The swelling morphology of libriform fibers was similar to that of tracheids. The walls of vessel elements and parenchyma cells also swelled considerably in thickness but, no balloon swelling was found in both elements. The differences of swelling in different elements can be interpreted in terms of the differences of organization and/or chemical components of the cell walls.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.