• Title/Summary/Keyword: fiber coupling

Search Result 331, Processing Time 0.025 seconds

Dyeing Performance of Disperse Dyes Based on 2-aminothiazole for Cellulose Triacetate and Nylon Fibers

  • Maradiya, Hari-Raghav;Patel, Vithal-Soma
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • A series of monoazo disperse dyes based on 2-amino-4-phenylthiazole was prepared using various N,N-dialkvlaniline derivatives as the coupling component. The dyes were characterized by IR spectral studies, visible absorption spectroscopy and elemental analysis. The dyeing performance of these dyes was assessed on cellulose triacetate and nylon fibers. These dyes were found to give a wide range of colour shades varying from bright red to royal blue with very good depth, brightness and levelness on fibers. The dyed fibers showed good to very good light fastness and very good to excellent fastness to washing, perspiration, rubbing and sublimation. The dyebath exhaustion and fixation on the fibers were found to be very good.

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

Polymer Light-Emitting Diodes Based on Poly(3-hexyl thiophene)

  • Chang, Seoul;Kim, Nam-Hee
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • Poly(3-hexyl thiophene)(P3HT) and poly(3-dodecyl thiophene)(P3DT) were polymerized by oxidative coupling with ferric chloride. The P3HT light-emitting device emitted red light and it could be observable in the ordinary indoor light. The device had the turn-on electric field of about 3$\times$$10^7$ V/m. The maximum electroluminescene (EL) intensity was obtained when the thickness of polymer layer was about 130 nm in IT0/P3HT/Al device. The maximum external quantum yield was 0.002%. The maximum luminance was 21 cd/$m^2$. The EL intensity decreases with increasing the crystallinity of the polymer layer. By using the oriented poly(3-alkyl thiophene)(PAT) layer as an electroluminescent layer in the ITO/polymer/Al light-emitting devices, the polarized EL light emission was observed. The EL intensity ratio of parallel to perpendicular direction to the stretch direction for P3HT was about 1.40.

  • PDF

Vibration suppression of rotating blade with piezocomposite materials (Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제)

  • Choi Seung-Chan;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Thermal Stability Analysis of Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Study on the integration of a micro lens on a 2-DOF in-plane positioning actuator (2-자유도 정밀구동기와 마이크로렌즈의 집적화에 관한 연구)

  • 김재흥;김용권
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.32-33
    • /
    • 2000
  • 최근 디지털 정보 처리 기술의 획기적인 발전과 함께 저가의 반도체 레이저의 개발로 말미암아 광기록 장치(optical pickup device) 및 고속 광통신(optical fiber communication)분야에 응용을 위한 레이저 광학 시스템에 대한 연구가 활발하다. 광신호의 커플링(coupling) 및 스위칭(switching)을 기반으로 하는 이러한 광학 시스템은 일반적으로 광신호의 변조를 위한 광학 요소와 광학 요소의 공간적 제어를 위한 정밀 구동기로 구성되는데, 기존의 상용 시스템의 경우에는 독립적으로 기 제작된 광학 요소와 정밀 구동기를 사후에 조립하는 방법으로 소기의 목적을 달성하였다. 이와 같은 경우 제작에 많은 노력과 비용이 요구되며, 성능의 획기적인 향상을 기대하기 어려우므로 최근에는 Optical MEMS 혹은 MOEMS(Micro-Opto-Electro-Mechanical System)로 대변되는 마이크로머시닝기술(micromachining technology)을 이용한 초정밀 광학계의 제작 기술을 통하여 기존 시스템의 한계를 극복하고자 하는 노력이 다각도로 모색되고 있다. (중략)

  • PDF

Optical amplification by evanescent field coupling of a side-polished fiber (측면 연마된 광섬유의 소산장 결합에 의한 광 증폭)

  • 손경락;김광택;이소영;송재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.98-99
    • /
    • 2000
  • 코어 가까이 측면 연마한 광섬유를 이용하여 광 여파기, 편광기, 감쇠기등의 광통신 소자로 응용하고자 하는 연구가 많이 진행되고 있다.$^{[1]}$ 이 소자는 광섬유를 절단하지 않은 상태에서 코어 가까이 측면 연마하여 광학적 기능을 가진 소자를 제작함으로서 공정이 간단하고 삽입손실이 작은 특성을 가지며 기계적 신뢰성이 우수하다. 측면 연마된 광섬유를 이용한 광 증폭의 경우 광섬유의 소산장(evanescent field)과 펌핑광에 의해서 여기되는 활성 물질과의 상호작용에 의해서 광 이득을 얻는다. 소산장 결합에 의한 평면도파로에서의 광 증폭$^{[2]}$ 과 다중 모드 광섬유에서의 펄스 레이저 증폭, 단일 모드 광섬유에서 632.8nm He-Ne 레이저의 연속광원 증폭$^{[3]}$ 은 이미 보고되었다. 본 논문에서는 측면 연마된 다중 모드 광섬유의 연마된 부위에 색소가 첨가된 용액을 떨어뜨림으로서 발생하는 소산장 결합에 의해서 광섬유내를 진행하는 연속적인 He-Ne 레이저 광을 증폭시키는 방법을 제안하고자 한다. (중략)

  • PDF

Design of a Taper-Underlaid Spot-Size Converter with an Offset

  • Choi, Jun-Seok;Oh, Jin-Kyong;Lee, Dong-Hwan;Lee, Hyung-Jong;Kim, Sang-Duk
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.40-43
    • /
    • 2007
  • We propose a taper-underlaid spot-size converter (TU-SSC) with an offset which consists of two vertically stacked taper layers. The designed TU-SSC reduces coupling loss of a high index-contrast waveguide with $1.5%{\Delta}$ to a single mode fiber from 1.5 dB to 0.27 dB. We also considered the effects of mask misalignment in the fabrication process of TU-SSC, and optimized the design of TU-SSC so that the additional loss of TU-SSC for the mask misalignment of $3{\mu}m$ in the photo-lithography process was as low as 0.13 dB.

Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (위성체 유연구조물의 진동 해석)

  • Yoon, Il-Soung;Kim, Gu-Sun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1216-1221
    • /
    • 2000
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, 'rotary inertia' and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF