• 제목/요약/키워드: fiber coupling

검색결과 331건 처리시간 0.028초

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • 제10권3호
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process (섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향)

  • 김세현;이건웅;이종훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • 제11권1호
    • /
    • pp.34-43
    • /
    • 1999
  • Flow-induced voids during resin impregnation and poor fiber wetting have known to be highly detrimental to the performance of composite parts manufactured by resin transfer molding(RTM) process. In this study, in order to overcome these serious problems encountered in RTM, the effects of surface modification by using silane coupling agent as a surface modifier on the flow characteristics, the wetting between resin and fiber, and void content were investigated. For the experiments of microscopic flow visualization and curing in a beam mold, glass fiber mats having plain weaving structure and epoxy resin were used. Modifying the fiber surface was found to result in a significant decrease of dynamic contact angle between resin and fiber and increase of wicking rate. Therefore, it was confirmed that the surface modification employed in this study could improve the wettability of reinforcing fibers as well as micro flow behavior. In addition, It was revealed that high temperature and low penetration rate of the resin are more favorable processing conditions to reduce the dynamic contact angle. However, surface modified fiber mat was found to have lower permeability than the unmodified one, which may be explained in terms of the decrease of contact time between resin and fiber owing to improvement of wetting. It was also exhibited that surface modification had a significant influence on void formation in RTM process, resulting in a decrease of overall void content due to the improvement of wetting in cured composite parts.

  • PDF

Relations between Physical Parameters and Improvement of Mechanical Properties in Jute Fiber Green Composites by Maleic Anhydride Coupler (Jute fiber Green Composite의 커플링제에 의한 물리적 인자의 변화와 기계적 특성 향상)

  • Lee, Jung-H.;Byun, Joon-H.;Kim, Byung-S.;Park, Joung-M.;Hwang, Byung-S.
    • Composites Research
    • /
    • 제20권1호
    • /
    • pp.23-31
    • /
    • 2007
  • In order to improve the mechanical properties of jute fiber/polypropylene(PP) composites, the property change with the addition of a coupling agent, maleic anhydride polypropylene(MAPP) was examined experimentally. The maleated coupler acts as an intermediate to chemically connect the polar nature of the fiber and non-polar nature of the polyolefin polymer resin. Furthermore, the decrease in viscosity of the resin which results from the melting point reduction by the MAPP, leads to an increase of contact area with the fiber interface. We discussed the improvement of the PP composite blend of the maleated coupler with the 80mm jute long fiber mat in conjunction with the change of physical parameters in the thermoplastic resin. We confirmed the extent of contribution to the mechanical physical enhancement by using the following parameters: melting flow index(MI) and viscosity, contact angle, thickness of the composite, interfacial shear strength and morphology observation etc. Especially it was observed that the MI and viscosity, MAPP mixture had a very strong relationship with the tensile and flexural strength and modulus, and interfacial shear strength(IFSS).

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권4A호
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Improved Closure Approximation for Numerical Simulation of Fiber Orientation in Fiber-Reinforced Composite (단섬유 보강 복합재료에서의 섬유배향의 수치모사를 위한 개선된 근사모델)

  • D.H. Chung;T.H. Kwon
    • The Korean Journal of Rheology
    • /
    • 제10권4호
    • /
    • pp.202-216
    • /
    • 1998
  • Improved version of previous 'Orthotropic' closure approximation, termed 'ORW' has been numerically developed using new homogeneous flow data. Previous 'Orthotropic' closure approximation, i.e., ORF or ORL showed non-physical oscillation for interaction coefficient $C_1$<0.001 at simple shear flow. It also shows non-physcial oscillation and under-prediction compared with 'Distribution Function Calculation' at non-homogeneous flow of center-gated disk. These phenomena are mainly due to the flow data of 'Distribution Function Calculation' which were used for least-square optimization. ORW obtained by fitting flow data of low interaction coefficient does not show non-physical oscillation and results in reasonably good behaviors at non-homogeneous flows as well as homogeneous flows. Fitting function forms have not been found to improve overall behaviors. It has been found that considering all the eigenvalues of orientation tensor (including the third eigenvalues) might end up with a better closure approximation than just considering the first and second eigenvalues. It is, however, very important and yet difficult to select appropriate function forms of eigenvalues. Numerical simulation including coupling and in-plane velocity gradient effects were performed for injection mold filing process with a film-gated strip and a center-gated disk using ORW and various other closure approximations for comparisons. Although ORW is in excellent agreement with 'Distribution Function Calculation', the predicted results seem to have consistent error in comparison with experimental data. The diffusivity term with constant interaction coefficient might have to be further investigated in order to accurately describe orientation states.

  • PDF

Fabrication of passive-aligned optical sub-assembly for optical transceiver using silicon optical bench (실리콘 광학벤치를 사용한 수동정렬형 광송수신기용 광부모듈의 제작)

  • Lee, Sang-Hwan;Joo, Gwan-Chong;Hwang, nam;moon, Jong-Tae;Song, Min-Kyu;Pyun, Kwang-Eui;Lee, Yong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • 제8권6호
    • /
    • pp.510-515
    • /
    • 1997
  • Packaging takes an extremely important element of optical module cost due primarily to the added complication of alignment between semiconductor devices and optical fiber, and many efforts have been devoted on reducing the cost by eliminating the complicated optical alignment procedures in passive manner. In this study, we fabricated silicon optical benches on which the optical alignments are accomplished passively. To improve the positioning accuracy of a flip-chip bonded LD, we adopted fiducial marks and solder dams which are self-aligned with V-groove etch patterns, and a stand-off to control the height and to improve the heat dissipation of LD. Optical sub-assemblies exhibited an average efficiency of -11.75$\pm$1.75 dB(1$\sigma$) from the LD-to-single mode fiber coupling and an average sensitivity of -35.0$\pm$1.5 dBm from the fiber and photodetector coupling.

  • PDF

Fabrication of Butt-Coupled SGDBR Laser Integrated with Semiconductor Optical Amplifier Having a Lateral Tapered Waveguide

  • Oh, Su-Hwan;Ko, Hyun-Sung;Kim, Ki-Soo;Lee, Ji-Myon;Lee, Chul-Wook;Kwon, Oh-Kee;Park, Sahng-Gii;Park, Moon-Ho
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.551-556
    • /
    • 2005
  • We have demonstrated a high-power widely tunable sampled grating distributed Bragg reflector (SGDBR) laser integrated monolithically with a semiconductor optical amplifier (SOA) having a lateral tapered waveguide, which is the first to emit a fiber-coupled output power of more than 10 dBm using a planar buried heterostructure (PBH). The output facet reflectivity of the integrated SOA using a lateral tapered waveguide and two-layer AR coating of $TiO_2\;and\;SiO_2$ was lower than $3\;{\times}\;10^{-4}\;over$ a wide bandwidth of 85 nm. The spectra of 40 channels spaced by 50 GHz within the tuning range of 33 nm were obtained by a precise control of SG and phase control currents. A side-mode suppression ratio of more than 35 dB was obtained in the whole tuning range. Fiber-coupled output power of more than 11 dBm and an output power variation of less than 1 dB were obtained for the whole tuning range.

  • PDF

Spectrum Characteristics of 1.55 ${\mu}m$ PBH-DFB-LD (광통신용 1.55 ${\mu}m$ PBH-DFB-LD 스펙트럼 특성)

  • 장동훈;이중기;이승원;박경현;김정수;김홍만;황인덕;박형무
    • Korean Journal of Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.120-124
    • /
    • 1994
  • PBH-DFB-LD emitting at $1.55\mu\textrm{m}$ wavelength has been fabricated for 2.5 Gbps optical fiber communications. For fabrication of PBH-DFB-LD. inteference expose for grating formation and 3-step LPE epitaxial growth was used. Fabricated PBH-DFB-LD operates in single longitudinal mode with more than 35dB SMSR and its threshold current is less than 15 mA. The operating wavelength is 1530-1550 nm with the temperature dependence of $0.9\AA/^{\circ}C$. Coupling coefficient(K) was estimated as $$97 cm^{-1} by means of stop-band measurement. PBH-DFB-LD fabricated in this experiment can be applicable as light source for 2.5 Gbps optical fiber communication system. ystem.

  • PDF

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • 제31권1호
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Introduction of the Structural Health Monitoring System with Fiber Optic Sensor & USN for Subway Station (광섬유센서 및 USN 기술의 지하역사 구조건전성 감시시스템 적용방안 연구)

  • Shin, Jeong-Ryol;Ahn, Tae-Ki;Lee, Woo-Dong;Han, Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.224-231
    • /
    • 2008
  • A subway or an underground railway is one of the representative public transportations which lots of people take everyday. Then, subway station, which is also one of the very important public civil infrastructures, generally services for a long period of time. During the service time of stations, they are easily damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. Recently, civil construction work on the places near station often creates lots of damages to the station. As these damages accumulate, the performance of station degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they bring into the collapse of stations with the structural failure under long-term loads and extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the structural health monitoring system need to be developed for ensuring the safety of station. In this paper, the development directions of the structural health monitoring system with fiber optic sensor and USN for subway station are briefly described.

  • PDF