• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.034 seconds

A Study of the Transient Effect at the Thulium-doped Optical Fiber Amplifier (Thulium이 도핑된 광섬유 증폭기의 과도현상에 관한 연구)

  • 이재명;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.349-352
    • /
    • 2001
  • The transient response in TDFA(Thulium-Doped Fiber Amplifier) is theoretically investigated. The TDFA has the spectral gain band in 1.47 ${\mu}{\textrm}{m}$. The transient model includes the transient buildup of the population inversion, the pump power, the signal power and their transient variation along the fiber amplifier. The results of numerical analysis can predict the gain saturation and recovery time at the fiber amplifier. It also shows the gain saturation and recovery effect depending on the pumping and saturation rate.

  • PDF

Analysis of Local Failure Machanism of Fiber Reinforced Concrete by Impact of High-Velocity Projectile (고속비상체 충돌에 대한 섬유보강 콘크리트의 국부파괴 매커니즘 분석)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Jung-Hyun;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.28-29
    • /
    • 2014
  • In this study, flexural strength by fiber reinforced for steel fiber and reinforced polyamide fiber concrete, and concrete fracture properties by improvement of flexural toughness and high-velocity projectile impact were evaluated. As a result, it was confirmed that flexural strength are improved by distribution of stress and suppress of cracks, and the back desquamation of concrete by high-velocity projectile impact is suppressed. In addition, It was observed that the spalling of rear is caused when tension stress is caused as shock wave by high-velocity projectile impact was transferred to the rear and tension stress is suppressed by fiber reinforcement.

  • PDF

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.