• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.039 seconds

Effect of Heat-Treated Temperature on Surface Crystal Structure and Catalytic Activity of ACF/ZnO Composite under Ultraviolet Irradiation and Ultrasonication

  • Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • ACF/ZnO photocatalyst was synthesized by a sol-gel method using activated carbon fiber (ACF) and Zn $(NO_3)_2$ as precursors. Samples were characterized by Brunauer-Emmett-Teller measurements (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The XRD results showed that ACF/ZnO composites only included a hexagonal phase by heat-treated temperature at $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$. The SEM analysis revealed that the ACF/ZnO composites did not exhibit any morphological changes of the catalyst surface according to the different heat-treated temperatures. The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) solutions under ultraviolet (UV) light and ultrasonication respectively. The results showed that the photocatalytic activity of ACF/ZnO composites heat-treated at $500^{\circ}C$ was higher than other samples, which is ascribed to the fine distribution of ZnO particles on the surface of the ACF. In addition, an ultrasound of low power (50 W) was used as an irradiation source to successfully induce ACF/ZnO composites to perform sonocatalytic degradation of MB. Results indicated that the sonocatalytic method in the presence of ACF/ZnO composites is an advisable choice for the treatments of organic dyes.

Analysis of the Components with Freeze Drying and Steam Drying of Gastrodia elata Blume (건조방법에 따른 천마의 성분 분석)

  • 신창식;박채규;이종원;이재곤;장진규;김용규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1058-1063
    • /
    • 1999
  • The purpose of this study was to investigate the differences in proximate composition, free sugars, organic acids, fatty acids, amino acids, mineral components, hunter color values and calory values between freeze dried and steam dried Gastrodia elata Blume. Crude fat and crude fiber decreased during manu facture of steam dried Gastrodia elata Blume. The contents of sugars in steam dried Gastrodia elata Blume decreased during manufacture than that of freeze dried Gastrodia elata Blume. The contents of malic acid, oxalic acid, ketoglutaric acid, malonic acid and succinic acid in freeze dried were similar to those in steam dried Gastrodia elata Blume. Citric acid decreased in steam dried Gastrodia elata Blume. The contents of linoleic acid, palmitic acid and oleic acid in freeze dried were similar to those in steam dried Gastrodia elata Blume. The contents of free amino acids in steam dried Gastrodia elata Blume decreased during manufacture. The mineral component contents of the Gastrodia elata Blume were greater in the order of Mn

  • PDF

A Study on Electromagnetic Absorption Characteristics of the Anisotropic Composite Structure with Specific Thickness (특정두께를 갖는 이방성복합재 구조의 전자파 응답특성 연구)

  • 정헌달;김덕주;이윤상
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.114-127
    • /
    • 1998
  • A user friendly computer code(EMCOMST; Electro-Magnetic response for COMposite STructures) was developed which provides with computations of the response characteristics such as reflectance and transmittance to the incident wave angles, frequencies, composite thicknesses, ply orientations, and types of backplate as the linearly polarized transverse electro-magnetic wave is emitted to the advanced composite structures. In this investigation were reviewed the electromagnetic characteristics of the continuous orthotropic fiber-reinforced organic matrix composites with or without ferrite fillers, which are actively applied to low-weight and high-strength aircraft structures. Also were calculated the response of the three layered compound structures which have appropriately stacked above-mentioned materials as transmitting layer, absorbing layer, reflection layer, respectively under the specific thickness constraints for mechanical strength design requirements. For the composite structures presented in this study, minimum reflectance value less than -5㏈ can be obtained in the frequency range of 4 to 12 ㎓. In addition, analysis of structures attached isotropic radar absorbing materials(RAM) is facilitated by putting the material properties in the material input card entries adequately.

  • PDF

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Kim, Hong-Taek;Lee, Hyuk-Jin;Jung, Woo-Chul;Koh, Hyung-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1014-1023
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated wall or slope. Due to its many advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail can't trespass on the neighbor private land, which pays rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about $50\sim70%$. To solve this, the Fiber Reinforced Polymer (FRP) soil nailing system, which does not need to be removed and allows for the trespass on the private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field, we evaluate the stability and behavior characteristics of the FRP nail system. Besides, numerical analyses using FLAC2D were performed for various soil conditions, where the simulations for pullout tests were carried out. As a result, compared with the conventional removable soil nailing system, the FRP soil nailing systems show similar behavior characteristics.

  • PDF

Adsorption of Nitrogen Oxides on Manufactured Impregnated Activated Carbon Fibers with Potassium Hydroxide

  • Kim, Hyun-Jin;Lee, Young-Whan;Choi, Dae-Ki;Lee, Eun-Il
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.198-204
    • /
    • 2002
  • In this paper, impregnated activated carbon fiber (IACF) was manufactured to pitch-based activated carbon fibers (ACF) with potassium hydroxide (KOH) by using wet impregnation method to raise nitrogen oxides ($NO_x$) adsorptivity. The properties of IACF were observed using EPMA, TGA and DSC and $NO_x$ adsorptivity was observed at high and low temperature. Before and after adsorption was analyzed using ToF-SIMS for examine surface characterization of adsorbed $NO_x$. The results showed that the better adsorptivity appeared for increasing KOH ratio. So, $NO_x$ adsorptivity showed result that is proportional between KOH and the adsorbed amount. On the other hand, adsorbent that manufactured without washing was better $NO_x$ adsorptivity than adsorbent that manufactured with washing. The behavior of adsorption show that crossing time of NO and $NO_2$ delayed for a rising adsorptivity. And NO ratio increased but $NO_2$ ratio decreased according as KOH ratio increases. $NO_x$ was confirmed through surface analysis that remain in $NO_2^-$ and $NO_3^-$ form on IACF surface.

  • PDF

Preparation of Carbon Nanofibers by Catalytic CVD and Their Purification

  • Lim, Jae-Seok;Lee, Seong-Young;Park, Sei-Min;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • The carbon nanofibers (CNFs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. The CNFs prepared from $C_3H_8$ at $550^{\circ}C$ was selected as the purification sample due to the higher content of impurity than that prepared from other conditions. In this study, we carried out the purification of CNFs by oxidation in air or carbon dioxide after acid treatment, and investigated the influence of purification parameters such as kind of acid, concentration, oxidation time, and oxidation temperature on the structure of CNFs. The metal catalysts could be easily eliminated from the prepared CNFs by liquid phase purification with various acids and it was verified by ICP analysis, in which, for example, Ni content decreased from 2.51% to 0.18% with 8% nitric acid. However, the particulate carbon and heterogeneous fibers were not removed from the prepared CNFs by thermal oxidation in air and carbon dioxide. This result can be explained by that the direction of graphene sheet in CNFs is vertical to the fiber axis and the CNFs are oxidized at about the similar rate with the impurity carbon.

  • PDF

A Low-Crosstalk Design of 1.25 Gbps Optical Triplexer Module for FTTH Systems

  • Kim, Sung-Il;Park, Sun-Tak;Moon, Jong-Tae;Lee, Hai-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a 1.25 Gbps triplexer module for Ethernet passive optical networks to realize fiber-tothe-home services. Electrical crosstalk characteristic of the 1.25 Gbps optical triplexer module on a resistive silicon substrate should be more serious than on a dielectric substrate. Consequently, using the finite element method, we analyze the electrical crosstalk phenomena and propose a silicon substrate structure with a dummy ground line that is the simplest low-crosstalk layout configuration in the 1.25 Gbps optical triplexer module. The triplexer module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and an analog photodetector as a cable television signal receiver. According to IEEE 802.3ah and ITU-T G.983.3, the digital receiver and analog receiver sensitivities have to meet -24 dBm at $BER=10^{-12}$ and -7.7 dBm at 44 dB SNR. The electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the dummy line with $100\;{\mu}m$ space from the signal lines and 4 mm separations among the devices satisfies the electrical crosstalk level compared to a simple structure. This proposed structure can be easily implemented with design convenience and greatly reduce the silicon substrate size by about 50 %.

  • PDF

Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury

  • Lim, Woo-Taek
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.70-80
    • /
    • 2015
  • The spinal cord is highly complex, consisting of a specialized neural network that comprised both neuronal and non-neuronal cells. Any kind of injury and/or insult to the spinal cord leads to a series of damaging events resulting in motor and/or sensory deficits below the level of injury. As a result, muscle paralysis (or paresis) leading to muscle atrophy or shrinking of the muscle along with changes in muscle fiber type, and contractile properties have been observed. Traditionally, histology had been used as a gold standard to characterize spinal cord injury (SCI)-induced adaptation in spinal cord and skeletal muscle. However, histology measurements is invasive and cannot be used for longitudinal analysis. Therefore, the use of conventional magnetic resonance imaging (MRI) is promoted to be used as an alternative non-invasive method, which allows the repeated measurements over time and secures the safety against radiation by using radiofrequency pulse. Currently, many of pathological changes and adaptations occurring after SCI can be measured by MRI methods, specifically 3-dimensional MRI with the advanced diffusion tensor imaging technique. Both techniques have shown to be sensitive in measuring morphological and structural changes in skeletal muscle and the spinal cord.

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF