• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.03 seconds

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

DIGESTIBILITY OF NEUTRALIZED UREA-TREATED RICE STRAW AND NITROGEN RETAINED IN CROSSBRED HOLSTEIN STEERS

  • Promma, S.;Tasaki, I.;Cheva-Isarakul, B.;Indratula, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.4
    • /
    • pp.487-491
    • /
    • 1994
  • The experiment was carried out to study the digestibility of nutrients in the neutralized urea-treated rice straw when it was fed singly or in combination with concentrates. A total of 8 crossbred Holstein steers were randomly allocated in a $4{\times}4$ Latin square design consisted of 4 treatments, in which the neutralized straw/concentrates ratio on DM basis varied as 100/0, 90/10, 80/20 and 70/30. The results indicated that the digestibility of DM, ether extract and NFE, and TDN and DE of the diets tended to increase with an increase in the level of concentrates. Regression analysis showed that the values of intercepts should be used for estimating DM digestibility, TDN and DE of neutralized straw, when it was fed with concentrates. Digestibilities of crude fiber, NDF and ADF tended to be higher when it was fed singly than when fed with concentrates. Digestibilities of organic matter and CP were not so much changed with the increasing level of concentrates. Although the animals singly fed the neutralized straw showed positive body weight gain and N-balance, it should be necessary to supplement the concentrates to get more body weight gain and N-balance in the crossbred Holstein steers.

Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

  • Hasegawa, Yasushi;Nakagawa, Erina;Kadota, Yukiya;Kawaminami, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • Objective: Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of ${\alpha}$-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods: In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results: While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion: Lignosulfonic acid may be useful as a functional anti-diabetic component of food.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Investigation of Microplastics from Three Marine Organisms (해양생물 체내 잔류 미세플라스틱 조사)

  • Borkar, Shweta;Nandanwar, Sondavid;Kim, Young-IL;Kim, Don;Shim, Hyun Kwan;Kim, Hak Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.244-250
    • /
    • 2020
  • Microplastic pollution in the marine ecosystem has been emerged as a global issue. In this study, we investigated the abundance of microplastics from clam Meretrix lusoria, blood arkshell Scapharca broughtonii, and warty sea squirt Styela clava obtained from a local market in Busan, Korea. The marine organisms were digested in 10% KOH, and were incubated at 40℃ and 150 rpm, for 7 days. The digest was filtered through standard sieve (5 mm, 1 mm, 300 ㎛, and 100 ㎛), and mciroplastics were identified using a light microscope and microFT-IR. The abundance of microplastics of clam, blood arkshell, warty sea squirt was 0.08 items/g, 0.05 items/g, and 0.12 items/g, respectively. The predominant microplastic size was in the range of 100-300 ㎛, occupying 48%, and the predominant type was fiber. The composition of microplastics was mostly rayon, semi-synthetic cellulosic material and polyester, which are main component of fabric and textile. We strongly believe that this preliminary work may provide useful information for the establishment of the standardized analysis method of microplastics ingested by marine organisms.

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

Buckling behavior of pultruded composite beams with circular cutouts

  • Aktas, Mehmet;Balcioglu, H. Ersen
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.359-370
    • /
    • 2014
  • In this experimental and numerical study, the effect of plate thickness, the diameter of circular cutout, the distance between circular cutouts and rowing orientation angle effect (${\theta}$) on the buckling load of E-glass/vinylester pultruded composite beams with single and double circular cutouts, were investigated. The composite beam having 2, 4, and 6 mm thicknesses was produced as [Mat/${\theta}$ /Mat/${\theta}$ /Mat] by using pultrusion technique. Seven different fiber angles as $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ were chosen for investigation of rowing orientation angle. The distances between each circular cutout were selected as 15, 30, 45, 60, and 75 mm in the case of double circular cutouts. The diameters of circular cutouts were chosen as 2, 4, 6, 8, and 10 mm to investigate the effect of cutout size. The experimental buckling loads were compared with the results calculated from the numerical analysis. ANSYS 11 commercial software was used for numerical study. A good agreement was obtained between numerical and experimental results.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Estimation of Source Contribution for Ambient Particulate Matters in Suwon Area (수원지역 입자상 오염물질의 오염원 기여도의 추정)

  • 이태정;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.285-296
    • /
    • 1997
  • The suspended particulate matters had been collected on quartz fiber fiters by a cascade impactor having 9 size stages for 4 years (Sep. 1991 to Dec. 1995) in Kyung Hee University-Suwon Campus. Membrane filters were used to collected the particulate matters on each stage. The weight concentration on each stage was obtained by a microbalance and further chemical element levels were determined by an x-ray fluorescence system. Based on these chemical information, our study focused on applying the target transformation factor analysis (TTFA), a receptor model, to identify aerosol sources and to apportion quantitatively their mass contribution. There are total of 63 ambient data sets. Each data set consists of the 8 size-ranged subdata sets characterized by 16 elemental variables. By the results, four to five sources were extracted from each size range and some sources reappeared in other size ranges. Then total of 8 source profiles were statistically generated from all the ranges, such as oil burning source, soil source, field burning source, gasoline related source, coal burning source, marine source, glass related source, and unknown sources. Apportioning aerosol mass to each source was intensively examined by investigating emission inventories near the study area. The results showed that soil particle source was the most significant contributor. However, coal and oil burning sources were the major anthropogenic ones. The study finally proposed some air quality control strategies to achieve the clean air quality in Suwon area.

  • PDF