• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.032 seconds

Effect of Natural Jute Fiber on Bond between Polyolefin Based Macro Fiber and Cement Matrix (폴리올레핀계 매크로 섬유와 시멘트 경화체의 부착특성에 미치는 천연마섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.251-260
    • /
    • 2011
  • In this study, the effect of natural jute fiber volume fraction on the bond characteristics of polyolefin based macro fiber in natural jute fiber reinforced cement composites, including bond strength, interface toughness, and microstructure analysis are presented. The experimental results on polyolefin based macro fiber pullout test of different conditions are reported. Natural jute fiber volume fractions ranging from 0.1% to 0.2% are used in the mix proportions. Pullout tests are conducted to measure the bond characteristics of polyolefin based macro fiber from natural jute fiber reinforced cement composites. Test results are found that the incorporation of natural jute fiber can effectively enhance the polyolefin based macro fiber-cement matrix interfacial properties. The bond strength and interface toughness between polyolefin based macro fiber and natural jute fiber reinforced cement composites increases with the volume fraction of natural jute fiber. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Mechanical Characteristic Analysis of Fiber Reinforced Strip Form Elastomeric Bearing by Experiment (스트립형 섬유 보강 탄성받침의 실험에 의한 기계적 특성해석)

  • 강경주;문병영;강범수;김계수;박진삼
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • In order to apply seismic isolators to low-cost buildings, seismic isolators have to be low-cost and light. In this paper fiber reinforced strip form isolator in which the steel plates of conventional rubber bearing were replaced by fiber was proposed. The proposed fiber reinforced strip form isolator was designed, fabricated, cut and subjected to vertical test and horizontal test. Therefore, fiber reinforced strip form isolator was to be shown valid in the view point of fabrication and application to desired size. The horizontal test and vertical test have shown that fiber reinforce strip form isolator could be replaced the rubber isolator. By these results, low-cost and light seismic isolator can be applied to the low-cost building.

University Students' Awareness of Eco-friendly Textile Fiber (친환경 섬유소재에 대한 대학생들의 인식도 연구)

  • Lee, Sun Young;Lee, Seung Goo;Kim, Jung Hwa;Lee, Jung Soon
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.781-790
    • /
    • 2012
  • In midst of growing interest and awareness towards sustainability and being "green", there has been increased demand for sustainable clothing. In the purpose of boosting eco-friendly textiles industry, this research was conducted by investigating environmentally-conscious clothing behavior of university students and assessing their views on eco-friendliness of fibers. Thus, their awareness on recycled polyester fiber was evaluated. The research was conducted by surveying 257 university students residing in Daejeon. The data were analyzed with descriptive statistics, factor analysis, and reliability analysis, using SPSS 19.0. The results were as follows. 1) The majority of the subjects answered "Disposing clothing in the clothing recycling container" to reduce environmental impact. 2) Six factors of eco-friendliness of fiber were extracted as reutilization, unfinishedness, economics, environment preservation, natural materials, and slow fashion by using factor analysis. 3) Subjects scored organic cotton as most eco-friendly among various fibers. Recycled polyester fiber was graded less sustainable than natural fiber, but more eco-friendly than artificial one. 4) In assessment of subject's awareness of recycled polyester fiber, they highly valued on resource-reutilization and economics, but less valued on its hygiene, thermal insulation and health-functionality.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

On-line Measurement and Characterization of Nano-web Qualities Using a Stochastic Sensor Fusion System Design and Implementation of NAFIS(NAno-Fiber Information System)

  • Kim, Joovong;Lim, Dae-Young;Byun, Sung-Weon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.45-46
    • /
    • 2003
  • A process control system has been developed for measurement and characterization of the nanofiber web qualities. The nano-fiber information system (NAFIS) developed consists of a measurement device and an analysis algorithm, which are a microscope-laser sensor fusion system and a process information system, respectively. It has been found that NAFIS is so successful in detecting irregularities of pore and diameter that the resulting product has been quitely under control even at the high production rate. Pore distribution, fiber diameter and mass uniformity have been readily measured and analyzed by integrating the non-contact measurement technology and the random function-based time domain signal/image processing algorithm. Qualifies of the nano-fiber webs have been revealed in a way that the statistical parameters for the characteristics above are calculated and stored in a certain interval along with the time-specific information. Quality matrix, scale of homogeneity is easily obtained through the easy-to-use GUI information. Finally, ANFIS has been evaluated both for the real-time measurement and analysis, and for the process monitoring.

  • PDF

A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission (음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석)

  • Woo Sung-Choong;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2005
  • Fracture behaviors of single-edge-notched monolithic aluminum plates and glass fiber/aluminum laminates under tensile loadings have been studied using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could beclassified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. AE source location determined by signal arrival time showed the zone of fracture. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations and fiber/aluminum lay-up ratios.

Fracture property of steel fiber reinforced concrete at early age

  • Fu, Chuan-Qing;Ma, Qin-Yong;Jin, Xian-Yu;Shah, A.A.;Tian, Ye
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.31-47
    • /
    • 2014
  • This research is focused on obtaining the fracture property of steel fiber reinforced concrete(SFRC) specimens at early ages of 1, 2, 3 and 7-day, respectively. For this purpose, three point bending tests of nine groups of SFRC beams with notch of 40mm depth and different steel fiber ratios were conducted. The experimental results of early age specimens were compared with the 28-day hardened SFRC specimens. The test results indicated that the steel fiber ratios and curing age significantly influenced the fracture properties of SFRC. A reasonable addition of steel fiber improved the fracture toughness of SFRC, while the fracture energy of SFRC developed with curing age. Moreover, a quadratic relationship between splitting strength and fracture toughness was established based on the experiment results. Additionally, afinite element (FE) method was used to investigate the fracture properties of SFRC.A comparison between the FE analysis and experiment results was also made. The numerical analysis fitted well with the test results, and further details on the failure behaviors of SFRC could be revealed by the suggested numerical simulation method.

A Statistical Approach for the Size Effect on the Strength of CFRP (탄소섬유 복합재의 강도 크기효과에 관한 통계적 접근)

  • Hwang, Tae-Kyeong;Kim, Hyung-Kun;Kim, Seong-Eun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.472-476
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to verify the size effect on the fiber strength of filament wound pressure vessel. As a test method, a series of fully scaled hoop ring tests with filament wound carbon fiber-epoxy has been conducted. Test results showed remarkable size effect on fiber strength. And, as an analytical method, the WWLM(Weibull weakest link model) and SMFM(sequential multi-step failure model) were considered and compared to hoop ring test data. The analysis results showed significantly lower fiber strength value than that of test data. Through the modification of length size effect, modified SMFM is suggested. The fiber strengths from modified SMFM showed good agreement with test data.

  • PDF

The Effect of ATH and Sb$_2$O$_3$on the Flammability and Mechanical Properties of Fiber Reinforced Plastics (ATH, Sb$_2$O$_3$조성에 따른 복합재료의 난연특성)

  • 강길호;최원종;김진곤;권경옥;박상윤;사공성호;김해형
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.65-71
    • /
    • 2002
  • In this paper, the thermal and flame properties of GFRP with various flame retardant(aluminum trihydrate, antimony trioxide) compositions have been investigated by thermal analysis and flammability tests(LOI test, flammability 45 degree test). The flame and mechanical properties(hardness, tensile strength, modulus) of general purpose grade glass fiber/unsaturated polyester composite with flame retardant composition have been also evaluated. The effect of cure pressure on the flame properties of aerospace grade glass fiber/epoxy composite was investigated. Considering the flame and mechanical property of composite, we could determine the optimum flame retardant composition(ATH 10∼20 phr). Test results show that the flame property of glass fiber/epoxy composite is considerably affected by cure pressure conditions.

The Nutritional Composition of Bamboo Shoots and the Effects of its Fiber on Intestinal Microorganisms (죽순의 영양성분 및 죽순의 식이섬유가 장내미생물에 미치는 영향)

  • Park, Eun-Jin;Jhon, Deok-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.5
    • /
    • pp.502-511
    • /
    • 2013
  • This study evaluated the composition two popular species of edible bamboo shoots in Korea (Phyllostachyspubescens and Sinoarundinarianigra) and the effect of their abundant dietary fiber on intestinal microorganisms in healthy young women. The ranges of total moisture, crude protein, crude lipid, crude ash, and dietary fiber content were 87.190.8, 2.943.5, 0.150.39, 0.411.05, and 4.206.15% (wet weight basis), respectively. Moisture and crude ash content increased after heat treatment; however, crude protein, crude lipid, and dietary fiber content were reduced after heating. The major minerals found in bamboo shoots were potassium, phosphorous, sulfur, magnesium, and calcium. In addition, glucose and fructose were abundant free sugars, while asparagine and tyrosine were the most abundant free amino acids. Approximately 70% of the total free fatty acids found in bamboo shoots were linoleic acid and linolenic acid. The ascorbic acid content was 6.60~17.56 mg/100 g (wet weight basis), and one phenolic compound, p-hydroxy benzoic acid, was 0.10.2% (wet weight basis) and detected by HPLC analysis. The intake of bamboo shoots for seven days significantly increased viable cell counts of Lactobacillus spp. and reduced viable cell counts of Bacteriodes spp. in feces (p<0.05). In our data, bamboo shoots may be useful in the food industry as high dietary fiber ingredients.