The Effect of ATH and Sb$_2$O$_3$on the Flammability and Mechanical Properties of Fiber Reinforced Plastics

ATH, Sb$_2$O$_3$조성에 따른 복합재료의 난연특성

  • Published : 2002.12.01

Abstract

In this paper, the thermal and flame properties of GFRP with various flame retardant(aluminum trihydrate, antimony trioxide) compositions have been investigated by thermal analysis and flammability tests(LOI test, flammability 45 degree test). The flame and mechanical properties(hardness, tensile strength, modulus) of general purpose grade glass fiber/unsaturated polyester composite with flame retardant composition have been also evaluated. The effect of cure pressure on the flame properties of aerospace grade glass fiber/epoxy composite was investigated. Considering the flame and mechanical property of composite, we could determine the optimum flame retardant composition(ATH 10∼20 phr). Test results show that the flame property of glass fiber/epoxy composite is considerably affected by cure pressure conditions.

무기계 난연제로 널리 사용되고 있는 aluminum trihydrate와 antimony trioxide의 첨가에 의한 열화거동과 난연효과를 열분석 및 화염특성시험(LOI test, flammabilty을 45 degree test)을 통하여 알아보았다. 일반 구조용 glass fiber/unsaturated polyester 복합재료 제조 시 난연 조성에 따른 난연 효과와 기계적 특성(경도, 인장강도, 탄성률) 변화를 조사하였다. 항공우주용 구조에 사용되는 난연 처리된 glass fiber/epoxy prepreg 복합재료 제조 시 공정조건에 따른 난연 특성을 비교 분석하였다. 실험결과를 이용하여 난연제의 난연 기구 및 기계적 물성을 고려한 최적 난연 조성은 ATH의 경우 10∼20 phr이였으며, autoclave 공정압력이 증가할수록 높은 LOI 값을 보였다.

Keywords

References

  1. U. A. Pinto, L. Y. Visconte, J. B. Gallo, and R. R. Nunes, 'Flame retardancy in thermoplastic polyurethane elastomers(TPU) with mica and aluminum trihydrate(ATH)', Polymer Degradation and Stability 69, pp.257-260(2000) https://doi.org/10.1016/S0141-3910(00)00047-1
  2. G. L. Nelson, 'Fire and polymers, Hazards identification and prevention', pp.87-129(1990)
  3. J. S. Jang, H. S. Chung, M. H. Kim, and H. J. Sung, 'The effect of flame retardants on the flammability and mechanical properties of papersludge/phenolic composite', Polymer Testing 19, pp.269-279(2000) https://doi.org/10.1016/S0142-9418(98)00088-9
  4. A. D. La Rosa, A. Recca, J. T. Carter, and P. T. McGrail, 'An oxygen index evaluation of flammability on modified epoxy/polyester systems', Polymer 40, pp.4093-4098(1999). https://doi.org/10.1016/S0032-3861(98)00646-6
  5. U. Sorathia, J. Ness, and M. Blum, 'Fire safety of composites in the US Navy', Composites Part A 30, pp.707-713(1999) https://doi.org/10.1016/S1359-835X(98)00112-2
  6. J. Wang, J. Du, J. Zhu, and C. A. Wilkie, 'An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites', Polymer Degradation and Stability 77, pp249-252(2002) https://doi.org/10.1016/S0141-3910(02)00055-1
  7. G. Marosi, A. Marton, P. Anna, G. Bertalan, B. Marosfoi, and A. Szep, 'Ceramic precursor in flame retardant systems', Polymer Degradation and Stability 77, pp259-265(2002) https://doi.org/10.1016/S0141-3910(02)00057-5
  8. TA Instruments, 'Thermal analysis technical literature (Theory & application)(1995)
  9. ASTM D-1230, 'Flammability of clothing textiles'
  10. ASTM D-2863, 'Oxygen index flammability test'