• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.039 seconds

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Analysis of Fiber-optic Link Budget for Optically fed Wireless Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analyses of performance of wireless broadband communication systems employing fiber-optic link have presented. We have analyzed CNR penalty to evaluate system performance by taking into account, radio link considering rainfall attenuation, and optical link considering several carrier-to-noise ratio versus the optical modulation index.

A Study on the Structural and Heat Transfer Analysis of the 500W-Class Optical Fiber Laser Output Transmission End Cap Module (500W급 광섬유 레이저 출력 전송 모듈 End Cap의 구조 및 열전달 해석)

  • Gao, Jia-Chen;Kim, Jae-Yeol;Heo, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • In recent years, the optical fiber laser has been widely used in industrial fields due to its excellent economical efficiency and its suitability for industrial applications. This usage has increased even further since the KW class Laser was developed. In this paper, structural analysis and heat transfer analysis of a 500W class optical fiber laser end cap module was performed. The stability of end cap housing with the efficient heat dissipation structure of a 500W-class end cap was evaluated. This research determined the optimal design that should be applied to the design and evaluation of future KW class laser output modules.

Nonlinear Inelastic Analysis of 3-Dimensional Steel Structures Using Fiber Elements (화이버 요소를 이용한 3차원 강구조물의 비선형 비탄성 해석)

  • Kim, Seung-Eock;Oh, Jung-Ryul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.347-356
    • /
    • 2006
  • In this paper, practical nonlinear inelastic analysis method of 3-dimensional steel structures accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(p-$\delta$) and frame(p-$\Delta$) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

Manufacturing and Material Analysis of Collagen/Chitosan Conjugated Fibers for Medical Application (의료용 소재 활용을 위한 콜라겐/키토산 복합섬유의 제조 및 특성 분석)

  • Gwak, Hyeon Jung;Ahn, Hyunchul;Lee, Won Jun;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.131-140
    • /
    • 2021
  • Collagen and chitosan are used in medical and cosmetic materials as natural polymers. In order to utilize the advantages of the materials, collagen/chitosan conjugated wet-spun fibers were prepared. The analysis of surface, optical, thermal and mechanical properties was carried out on the various composition of collagen and chitosan. As a result of images analysis, it was verified that the collagen/chitosan conjugated fibers were stably spun. In addition, the optical and thermal properties of fibers were observed to be changed by hydrogen bond. As a result, an optimized composition could be found at an appropriate content. Moreover, the optimized fibers have mechanical properties similar to chitosan fibers, while improving the structural and thermal stability by its hydrogen bond. In addition, the wet-spun collagen/chitosan conjugated fibers can be applied to medical and various fields through mechanical properties according to content control.

Second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular columns

  • Van-Tuong Bui;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.673-693
    • /
    • 2024
  • An advanced numerical method is proposed in this paper for the second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular (CFST) columns under earthquake loadings for the first time. The proposed method can exactly predict the nonlinear response of the bridges by using only one element per member in simulating the structural model. This comes from considering both the geometric and material nonlinearities in a fiber beam-column element and a catenary cable element. In the fiber beam-column element, the geometric nonlinearities are captured by applying the stability functions, whereas the material nonlinearities are evaluated by tracing the uniaxial cyclic stress-strain curves of each fiber on the cross-sections, which are located at the integration points along the member length. A computer program was developed based on Newmark's average acceleration algorithm to solve the nonlinear equations of motion. The accuracy and computational efficiency of the proposed program were verified by comparing the predicted results with the experimental results, and the results obtained from the commercial software SAP2000 and ABAQUS. The proposed program is promising as a useful tool for practical designs for the nonlinear inelastic dynamic analysis of cable-stayed bridges.

A Study on Characteristic Analysis of Ferrule Co-axial Grinding Machine (페룰 연삭기의 안정성평가를 위한 특성해석)

  • Hwang J.H.;Ka C.S.;Chung I.Y.;Ahn Charles
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.96-99
    • /
    • 2005
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS Designspace program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model.

  • PDF

Strength Reliability Analysis of Continuous Steel Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 연속보의 강도신뢰성 해석)

  • 유한신;곽계환;조효남
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.267-273
    • /
    • 2003
  • Steel fiber may be used to raise the effectiveness and safety of reinforced concrete structure and to relax its brittle-fracture behavior. However it is to be clearly stated that the uncertainty for the strength of fiber reinforced concrete(SFRC) is rather increased. Therefore, it is necessary to evaluate the safety of SFRC beam using reliability analysis incorporating realistic uncertainty. This study presents the statistical data and proposes the limit state model to analyze the reliability of SFRC bear In order to verify the efficiency of the proposed limit state model, its numerical application and sensitivity analysis were performed for a continuous SFRC beam. From the results of the numerical analysis, it is founded that the reliability of SFRC beam is significantly difficult from the conventional RC beams and proposed limit state model (or SFRC beam is more rational compared with that for conventional RC beams. Then it may be stated that the reliability analysis of SFRC beams must be carried out for the development of design criteria and the safety assessment.

  • PDF