• Title/Summary/Keyword: fiber analysis

Search Result 3,988, Processing Time 0.032 seconds

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

Theoretical Analysis of Fast Gain-Transient Recovery of EDFAs Adopting a Disturbance Observer with PiD Controller in WDM Network

  • Kim, Sung-Chul;Shin, Seo-Yong;Song, Sung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.153-157
    • /
    • 2007
  • We have proposed an application of disturbance observer with PID controller to minimize gain-transient time of wavelength-division-multiplexing(WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than $3{\mu}sec$ by applying a disturbance observer with a proportional/integral/ differential(PID) controller to the control of amplifier gain. The theoretical analysis on the 3-level erbium-doped fiber laser and the disturbance observer technique is demonstrated by performing the simulation with co-simulation of the $MATLAB^{TM}$ and a numerical modeling software package such as the $Optsim^{TM}$.

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

A Study on the Improvement Buckling Strength of Laminated Composite Plate by Taguchi Method (다구찌법을 이용한 복합적층판의 좌굴강도 개선에 관한 연구)

  • 구경민;홍도관;김동영;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1362-1365
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized buckling strength of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result optimization achievement repeatedly using statistical orthogonal array of experimental design.

  • PDF

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

Design and Analysis of Aircraft Composite Window Frame (항공기용 복합재 윈도우 프레임 설계 및 해석)

  • HONG D.J.;KIM W.D.;LEE G.Y.;KIM J.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.232-235
    • /
    • 2004
  • This is the preliminary study to develop composite window frame of commercial aircraft using VaRTM process. For two candidate carbon fabric(triaxial fabric, sleeving braider dry carbon fiber), specimens were fabricated using VaRTM process ,and then the physical & mechanical tests were performed to gain material property according to ASTM. FEM analysis for each candidate carbon fabric were performed to find the minimum ply number and weight for composite window frame. In this study Tsai-Wu strength failure criteria was utilized to evaluate the safety of structure.

  • PDF

Void Contents Evaluation of Composite Laminates by Ultrasonic Attenuation Measurements (초음파의 감쇠를 이용한 복합재료의 기공함량 평가)

  • 정현조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1535-1541
    • /
    • 1994
  • The void content of carbon fiber reinforced composite laminates was determined by the ultrasonic nondestructive technique. The ultrasonic immersion, through-transmission method developed stresses the utilization of spectral analysis and frequency dependence of the attenuation due to porosity. The measured attenuation shows approximately linear behavior over the frequency range investigated. The linear relationship between the void content and the attenuation slop (d $\alpha$/df) is found to hold, but the constant of proportionality is quite different for samples with different pore morphology. The void volume fraction determined by the attenuation slope agreed very well with that obtained by the acid digestion analysis.

Three-Dimensional Finite Element Analysis for Compression Molding of Step-Type Random/Unidirectional Polymer Composite Laminates (단부형상을 갖는 무배향/일방향 복합적층판의 압축성형에 있어서 3차원 유한요소해석)

  • 송강석;채경철;김이곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.101-106
    • /
    • 1999
  • Fiber reinforced plastic composites is widely used to make be lightening of aircraft and automotive owing to having high specific strength and specific modulus. And it is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional composite mats. Its deformation and charge shape are very different by stack type of random and unidirectional mats. In this paper, the characteristics of flow fronts such as a bulging phenomenon for step-type random/unidirectional composite mats and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on the mold filling parameters are also discussed.

  • PDF