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Geometrically nonlinear analysis of thin-walled open-section composite beams
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This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A
general geometrically nonlinear model for thin-walled composite beams and general laminate stack-
ing sequences is given by using systematic variational formulation based on the classical lamination
theory. The nonlinear algebraic equations of present theory are linearized and solved by means of
an incremental Newton—Raphson method. Based on the analytical model, a displacement-based
one-dimensional finite element model is developed to formulate the problem. Numerical results
are obtained for thin-walled composite beams under general loadings, addressing the effects of
fiber angle, laminate stacking sequence and loading parameters.
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I. INTRODUCTION

Fiber-reinforced composite materials have been used
over the past few decades in a variety of structures. Thin-
walled composite structures are often very thin and have
complicated material anisotropy. The theory of thin-
walled closed section members made of isotropic mate-
rials was first developed by Vlasov [1] and Gjelsvik [2].
Bauld and Tzeng [3] presented nonlinear model for thin-
walled composites by extending Gjelsvik’s formulation
to the balanced symmetric laminated composite mate-
rials. Gupta et al [4] developed a two-noded, 8 degrees
of freedom per node thin-walled open-section laminated
anisotropic beam finite element. Chandra and Chopra
[5] presented a theoretical-cum-experimental study on
the static structural response of composite [-beams with
elastic couplings. Bhaskar and Librescu [6] developed
non-linear theory of composite thin-walled beams, which
were employed in a broad field of engineering problems.
Omidvar and Ghorbanpoor [7] developed a nonlinear fi-
nite element model for thin-walled open-section struc-
tural members made of laminated composites with sym-
metric stacking sequence. Based on the asymptotic anal-
ysis of the classical shell theory, Atilgan and Hodges
et al. [8,9] developed geometrically nonlinear behavior
of anisotropic beams. By using the computer program
so-called ”Variational Asymptotic Beam Section Anal-
ysis” (VABS), Cesnik, Hodges and Yu et al. [10,11] per-
formed studies of thin-walled composite beams. VABS
used the variational asymptotic method (VAM) to split
a three-dimensional nonlinear elasticity problem into a
two-dimensional linear cross-sectional analysis and a one-
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dimensional, nonlinear beam problem. Fraternali and
Feo [12] developed a small strain and moderate rotation
theory of laminated composite thin-walled beams by gen-
eralizing the classical Vlasov theory. Special attention,
deserve the works of Cortinez and Piovan et al. [13,14,15]
who introduced non-linear model for of thin-walled com-
posite beams with shear deformation. This model incor-
porated, in a full form, the shear flexibility (bending and
non-uniform warping), featured in a consistent way by
means of a linearized formulation based on the Reissner’s
Variational Principle. However, it was strictly valid for
symmetric balanced laminates and especially orthotropic
laminates. Moreover, Piovan and Cortinez [15] also de-
veloped a new theoretical model for the dynamic, static
and buckling analysis of anisotropic, open and closed
cross-section composite thin-walled-beams with general
stacking sequences and arbitrary states of initial stresses
and off-axis loadings. Recently, a general geometrically
nonlinear theory was derived by Lee [16] to study the
lateral buckling of thin-walled composite beams with
monosymmetric sections.

In the present study, the analytical model developed by
Lee [17] is extended by incorporating geometric nonlin-
earity. A general geometrically nonlinear model for thin-
walled composite beams and general laminate stacking
sequences is given by using systematic variational formu-
lation based on the classical lamination theory. The non-
linear algebraic equations of present theory are linearized
and solved by means of an incremental Newton—Raphson
method. Based on the analytical model, a displacement-
based one-dimensional finite element model that ac-
counts for the geometric nonlinearity in the von Kédrmén
sense is developed to formulate the problem. Numeri-
cal results are obtained for thin-walled composite beams
under general external loadings, addressing the effects of
fiber angle, laminate stacking sequence and loading pa-
rameters.
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FIG. 1 Definition of coordinates in thin-walled open section

Il. KINEMATICS

The theoretical developments presented in this paper
require two sets of coordinate systems which are mutu-
ally interrelated. The (n, s, z) and (z,y,2) coordinate
systems are related through an angle of orientation 6 as
defined in Fig.1.

To derive the analytical model for a thin-walled com-
posite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its
own plane.

2. The linear shear strain %,, of the middle surface is
zero in each element.

3. The Kirchhoff-Love assumption in classical plate
theory remains valid for laminated composite thin-
walled beams.

The midsurface displacement components @, v at a point
A in the contour coordinate system can be expressed

(s, 2) = U(2)sinf(s) — V(z)cos0(s) — P(2)q(s]la)
(s,2) = U(z)cos8(s)+ V(2)sinf(s) + ®(z)r(sflb)

QY

For each element of middle surface, the shear strain be-
come

N 06 Ow

Vsz = & + E =0 (2)

Eq.(2) can be integrated with respect to s from the
origin to an arbitrary point on the contour,

w(s,z) = W(2) = U'(z)a(s) = V'(2)y(s) — ¥ (2)w(4B)

where differentiation with respect to the axial coordinate
z is denoted by primes ('); W represents the average ax-
ial displacement of the beam in the 2 direction; = and y
are the coordinates of the contour in the (z,y, 2} coordi-
nate system; and w is the so-called sectorial coordinate
or warping function given by

w(s) = /Sr(s)ds (4a)

The displacement components w, v, w representing the
deformation of any generic point on the profile section
are given by the assumption 3.

u(s, z,n) = (s, 2) i (5a)
v(s, z,n) = z’;(s,z)—na—uf;s’—z) (5b)
w(s, z,n) = w(s,z)-—n%sz’z) (5¢)

The von Kdrméan type strains, in which only the prod-
ucts of «, v and their derivatives are retained and all other
nonlinear terms are neglected, are considered and given

by

ow 17,0u\2 Ov\2
= 137+ (5 6
€ 9z + 2[(8z) (az) ] (62)
v  Ow
= — 4+ = b
sz 0z + s (6b)
Eq.(6) can be rewritten as
€2 = & +nky + n°xs (7a)
Ysz = sz + NRsy (7b)
where
ow 17,062 90,2
€, = — + = |(=— — 8
€ 0z +2[(8z) +(3z) } (82)
8%u  0%a ow
Ry — ——=% — — 8b
s 822 930z 0z (8b)
0%a 0% \ 2
oy = —2—— 3, = [ —o 8
Fosz 2856,2’ Xz (8582) (8)

In Eq.(8), €, R., ks, and X, are midsurface axial
strain, biaxial curvature and high order curvature of
the shell, respectively. The above shell strains can be
converted to beam strain components by substituting
Egs.(1), (3) and (5) into Eq.(8) as

€ = €+ xry +yrs + why, (9a)
Ry = Kysin® — kg, 0880 — Ku,q + X7 (9b)
Rsz = Ksz; Xz = Xz (90)

where €2, K, Ky, Ku, sz and x, are axial strain, biaxial
curvatures in the z and y direction, warping curvature
with respect to the shear center, twisting and high order
curvature in the beam, respectively defined as

Z

€ = W/+%[U12+V/2+(r2+q2)¢/2]

— 2 V' g, U (10a)

Ky = V' —U'S; k,=-U"+V'® (10b)
1

Ky — —Q)/; Ksz = 2(1),§ Xz = -®" (10c)

2

The resulting strains can be obtained from Eqgs.(7) and
(9) as

€, = €+ (z+nsind)ky + (y —ncosf)rg
+ (w—ng)ky + 2rn+n?)x, (11a)
Ysz — NRsz (llb)
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1Il. VARIATIONAL FORMULATION

Strain energy of the system is calculated by

1
U = 5/(0Z62+Jsz%z)dv (12)

After substituting Eq.(11) into Eq.(12)

1
U = 3 / {G’Z [62 +(z +nsinb)k, + (y — ncos Pk,
+ {(w—ng)k, + (2rn + nz)xz] + Usznnsz}dv (13)

The variation of strain energy can be stated as

!
U = / (Nybe, + Mybky + M8k, + M, 0k,
0
+ Mdrs, + R,0x,)ds (14)

where N, My, M,, M,,, M, R, are defined by integrating
over the cross-sectional area A4 as

N, = /szsdn (15a)
A

M, = /Uz(ernsinH)dsdn (15b)
A

M, = /Uz(y—ncosb’)dsdn (15¢)
A

M, = /Uz(w—nq)dsdn (15d)
A

M, = /aszndsdn (15€)
A

R, = /az(Zrn+n2)dsdn (15f)
A

The variation of the strain energy can be obtained by
substituting Egs.(10) and (11) into Eq.(14),

|

14
U = / [NL6W' = M,8U" — Mo6V" — M,,69"
0
2M,6%' + N,(U'8U" + V'8V")
(M, — 2,N,) (V60 1 &'6V")
(M, — y,N)(U'6®' + &'5U")
(r2N, + Rz)<1>/6<1>’] dz (16)

P+ o+

-+

The variation of work done by external forces
8V = —/(pz&w + ppdu + psdv)du (17)

where p., pn, ps are forces acting in z,n and s direction.
After substituting Egs.(1) and (3) into BEq.(17)

14

sV = —/ [P.6W + V68U + MU’ + V, 6V + M8V’
g

+ T6® + M, 59 |dz (18)

Principle of total potential energy can be stated
= 811 = §U + 8§V (19)

Substituting Egs.(16) and (18) into Eq.(19) the weak
form of the present theory for thin-walled composite
beams are given by

o
I

1
/ {NzéW/ — M,oU" — M,6V" — M,,69" + 2M,69’
o

+

NL(U'SU + V'8V') + (My — z,N,) (V'8 + ®'5V")
— (My — ypNo)(U'6® + ®'6U") + (r2N, + R, )P 6’

— PLOW —V,0U — MU' =V, 0V — M, 6V"

— T5d — Mwacb/] dz (20)

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a k** orthotropic lamina
in the laminate co-ordinate system are given by

k = = k
Tz | T QTG €z (21)
Osz Ts Wes Vsz g

where Q;‘j are transformed reduced stiffnesses. The con-
stitutive equations for bar forces and bar strains are ob-
tained by using Eqs.(11), (15) and (21)

N, Eyn Eip Eis Eiy Eis Eis €
M, Fay Exz Egy Eos Eog Ky
M, | Es3 FEsy FEas FEag fz koo
M, E4y Eys Egs K
M, Ess Fxe Ksy
R, sym. Egg Xz

where E;; are stiffnesses of the thin-walled composite.

V. GOVERNING EQUATIONS

The nonlinear equilibrium equations of the present
study can be obtained by integrating the derivatives of
the varied quantities by parts and collecting the coeffi-
cients of 6W, §U, 6V and &

N, + P, =(IBa)

M)+ (N(U + yp @) — (M) +Vy — M’y =(18b)

M+ [NV — 2, @) + [M, @) +V, — M), =(Bc)

M +2M] + [N (r;® + y,U' — 2, V)|
HMV) = MUY + [R) + T — M, —(2Bd)

Eqs.(23) are the general nonlinear equilibrium equations.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams
described in the previous section was implemented via a
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displacement based finite element method. The general-
ized displacements are expressed over each element as a
linear combination of the one-dimensional Lagrange in-
terpolation function ¥; and Hermite-cubic interpolation
function ¥; associated with node j and the nodal values

ij=1 j=1
V = Z’ijj; b = Z¢j¢j (24b)
j=1 j=1

Substituting these expressions into the weak statement
in Eq.(20), the finite element model of a typical element
can be expressed as

[K{AD]{A} = {f} (25)

Solution of Eq.(25) by the Newton—Raphson iteration
method results in the following linearized equations for
the incremental solution at the r** iteration (Ref.[19])

[T{AY ' H{A} = {f} - (IK{Ay (26)

where the tangent stiffness matrix is defined by

af _ oK,
K o
3

ul + K° (27)

In Eq.(25), {A} is the unknown nodal displacements
{A}={W UV T (28)

Vil. NUMERICAL EXAMPLES

For verification purpose, a cantilever composite I-
beam, with warping constrained at both ends, has length
1=0.762m, the cross section and the stacking sequences
shown in Ref.[5] under the application of a tip torque
of 0.113 Nm is considered. The angle of twist along the
length using present analysis are compared with previous
available results in Fig.2. The present results show better
correlation with experiments than the previous results.

The next example is a cantilever composite Z-section
beam with geometry and stacking sequences shown in
Fig.3 is subjected to a tip shear load of 4.54 N. The
results using the present analysis are compared with pre-
viously available results Refs.[4,20] in Table I. The corre-
lation between the present analysis and previously avail-
able results is good in all cases.

A pinned-hinged composite I-beam of length L = 8m
under an eccentric uniform load q acting at the midplane
of the top flange is considered in order to investigate the
effect of load parameter and fiber orientation on displace-
ments. The geometry and stacking sequences of compos-
ite I-beam are shown in Fig.4, and the following engi-
neering constants are used

El/EQ = 25, G12/E2 = 0.6, Vig = 0.25 (29)

0.0025 , [
0.002 ~ =
0.0015 -1
V’(rad) ’
0.001 |- -
0.0005 Present 1
Ref[5] ——
Ref[8] -+~
0 ! ! 1
0 200 400 600 800

T

FIG. 2 Bending slope distribution along a cantilever beam
subjected to a tip torque of 0.113Nm

Y
25.4 mm
r.____..

[45/-45]

[0/45/0]

[45/—45]
[0/45/0]

50&0] Z
% [45/-45]

e
P=4.54 N |25.4 mim

FIG. 3 A cantilever composite Z-section beam under a tip
shear load

W
3
5
5

[0/45/0]

Stacking sequence of this beam consists of four lay-
ers with equal thickness as follows: [#/ — 0]z at bottom
flange and unidirectional at web and top flange, respec-
tively. For this stacking sequence, the coupling stiffnesses
Eis, Eig and FEss do not vanish due to unsymmetric
stacking sequence of the webs and flanges. Accordingly,
the beam sustains simultaneously two kinds of couplings
from material anisotropy and geometric nonlinearity.

TABLE I The tip deflection and the angle of twist of a can-
tilever beam under eccentric load

Lay-up [45°/ — 45°] [0°/45°/0°]
Ref.[4] Ref.[20] Present Ref[4] Ref.[20] Present
W 0.016 0.008 0.008 0.000 0.053 0.000
U -3.120 -3.558 -3.521 -2.390 -2.638 -2.596
w -9.210 -10.510 -10.396 -7.070 -7.791 -7.664
\% 2.090 2.372 2.356 1.610 1.759 1.738
\'A 6.190 7.003 6.958 4.750 5.194 5.133
0] 27.050 34.930 35.255 29.250 30.890 30.773
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b;=20 cm

[6/-6], |
b,=10 cm

FIG. 4 A pinned-hinged composite I-beam under an eccentric
uniform load

As a first example, stacking sequence at two specific
fiber angle 6 = 30°,90° is considered to investigate the
effects of load parameter on displacements in the high
nonlinear region. It should be noted that for § = 90°,
all the coupling stiffness vanish, that is, only geometri-
cal nonlinear effect exists. The load with increment of
Ag = 0.05 is increased until the first critical point is
obtained. Figs.5 and 6 show the load versus vertical dis-
placement, the angle of twist of two stacking sequences.
The highest load for fiber angle # = 90° is smaller than
that of § = 30°. It is evident that the linear theory is ad-
equate in a relatively large region up to the point where
applied load reaches value of § = 0.5,1 for fiber angle
6 = 90° and # = 30°, respectively. It is clear that the
nonlinear analysis predicts a softer response in vertical
direction and flexibility in rotation. This is due to the
fact that the geometrical nonlinear effect causes flexural-
torsional coupling which results in an increase in the flex-
ural stiffness and a decrease in the torsional stiffness of
the beam. For & = 30°, at the highest load presented
in Figs.5,6 the nonlinear vertical displacement is about
140% of the linear value and the nonlinear angle of twist
is about 138% of the linear value. It is observed that the
effect of the geometric nonlinearity is apparent with in-
creasing load intensity. This implies that discarding this
effect leads to an overprediction of displacements.

To investigate the geometrical nonlinear effect further,
a fix load is considered while the fiber angle is rotated
in the webs. Based on previous numerical example, an
applied load § = 1.0 is chosen to show effect of fiber an-
gle on the flexural-torsional response. Variation of the
vertical and torsional displacement with respect to fiber
angle change are shown in Figs.7 and 8. It appears that
the nonlinear vertical displacement are not as sensitive
as the nonlinear torsional displacement when fiber angle
changes. Especially, for fiber angles less than 6 = 30°,
the vertical displacement of linear and nonlinear analy-
sis coincides. As the fiber orientation is rotated off-axis,
geometrical nonlinear effect is prominent, that is, the dis-
crepancy between the nonlinear and linear analysis be-
comes significant. The difference between displacements
of two analyses is minimum at = 0° and reaches max-
imum value at & = 90°. This phenomenon can be ex-
plained that the axial, flexural and torsional rigidities

T T T
2 - _
15 F i
ok
S
q S x
4 1r 7 x i
*
*
*
0.5 - . Linear, # =30° ++ ... B
' Nonlinear, 8 = 30°
Linear, 8 = 90° -+ & -
Nonlinear, 8 — 90° —e—
0 | I i |
0 0.01 0.02 0.03 0.04

v

FIG. 5 Load versus vertical displacement at mid-span.

I T P I T
2 - E .
1.5 - .
. .
*
q *
4 1+ * a
*
*
0.5 Linear, # = 30° +- . .- ]
’ Nonlinear, § = 30°
Linear, # = 90° - - -
Nonlinear, § = 90° ——
0 | 1 | | | | ]

0 05 1 15 2 25 3 35
¢

FIG. 6 Load versus the angle of twist at mid-span.

decrease significantly, consequently, the relative geomet-
rical nonlinear effect increases when comparing to that
at § = 0°.

VI, CONCLUDING REMARKS

The effect of geometric nonlinearity on flexural-
torsional response of thin-walled open-section compos-
ite beams under general external loading is presented.
The nonlinear algebraic equations of present theory
are linearized and solved by means of an incremen-
tal Newton—Raphson method. Based on the analytical
model, a displacement-based one-dimensional finite ele-
ment model that accounts for the geometric nonlinearity
in the von Kérmén sense is developed to formulate the
problem. The inclusion of geometric nonlinear effect is
required for the cases of composite beams subjected to
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o, linear - ... .-
0.06 | U, nonlinear
4, nonlinear —*—

0.05

0.04

&
]

0.03
0.02

0.01 }

FIG. 7 Variation of the horizontal and vertical displacements
at mid-span with respect to fiber angle change.

3 T T | T T
Linear « -+« -
| Nonlinear

FIG. 8 Variation of the angle of twist at mid-span with re-
spect to fiber angle change.

high loading. The model presented is found to be appro-
priate and efficient in analyzing geometrically nonlinear
behavior of thin-walled open-section composite beams.
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