• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.03 seconds

Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements (노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성)

  • Lee, Ju Myeong;Baek, Seung Beom;Lee, Kang Hoon;Kim, Jo Soon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

THERMO-FLUID ANALYSIS ON THE HELIUM INJECTION COOLING OF GLASS FIBER FOR HIGH SPEED OPTICAL FIBER MANUFACTURING (광섬유 고속생산용 헬륨 주입식 유리섬유 냉각공정에 대한 열유동 해석)

  • Oh, I.S.;Kim, D.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92-95
    • /
    • 2011
  • In manufacturing optical fibers, the process starts with the glass fiber drawing from the heated and softened silica preform in the furnace, and the freshly drawn glass fiber is still at high temperature when it leaves the glass fiber drawing furnace. It is necessary to cool down the glass fiber to the ambient temperature before it then enters the fiber coating applicator, since the hot glass fiber is known to cause several technical difficulties in achieving high quality fiber coating. As the fiber drawing speed keeps increasing, a current manufacturing of optical fibers requires a dedicated cooling unit with helium gas injection. A series of three-dimensional flow and heat transfer computations are carried out to investigate the effectiveness of fiber cooling in the fiber cooling unit. The glass fiber cooling unit is simplified into the long cylindrical enclosure at which the hot glass fiber passes through at high speed, and the helium is being supplied through several injection slots of rectangular shape along the cooling unit. This study presents and discusses the effects of helium injection rates on the glass fiber cooling rates.

  • PDF

A Quantitative Comparison of Fibroblasts, Collagen and Elastic Fiber Densities in the Young and Aged Rat Skin

  • Song, In-Yong;Jeong, Myung-A;Lee, Jae-Hyoung
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Computerized image processing and analysis system was used for quantitative assessment of skin tissue components in color histological sections. The purpose of this study was to determine that the changes in the collagen fiber density and elastic fiber density in dermis in the rat skin as aging. And also to determine that the correlation between fibroblast density and collagen fiber density and elastic fiber density in the aged rat skin. Ten weeks old ($130{\sim}150g$) eight and fifty-four weeks old ($300{\sim}350g$) eight female Sprague-Dawley rats were used. The full-thickness skin biopsy specimens were prepared serial sections and stained with hematoxylin and eosin, Masson's trichrome and Verhoeff-van Gieson. The collagen fiber and the elastic fiber were identified using the image analysis processing system and then calculated the collagen fiber density rate and the elastic fiber density rate in the dermis. It also identified fibroblast and calculated fibroblast density in the dermis. By using a Student's t-test, a decrease in the collagen fiber density rate (t=-4.650, P<0.001) and the elastic fiber density rate (t=-6.494, P<0.001) of dermis can be observed in aged rats as compared with the young rats. A Student's t-test showed a significantly less fibroblast density in the aged rats than the young rats (t=-4.497, P<0.001). There were significantly positive correlation between the fibroblast density and the collagen fiber density rate (r=.69, P<0.001) and the elastic fiber density rate (r=.91, P<0.001). These results indicate that the aging may decrease the collagen fiber density and elastic fiber density due to reduced the proliferative and synthetic activity of fibroblast in the dermis.

  • PDF

Statistical Analysis of Interfacial Shear Strength on Fiber-Matrix (섬유-Matrix의 계면전단강도에 관한 통계적고찰)

  • 문창권;남기우;엄윤성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 1992
  • The effect of fiber diameter and gauge length on pull-out test for the interfacial properties in fiber reinforced resin composites have been investigated and these results have been arranged as statistical analysis. The fiber and matrix resins used for this study were stainless steel fiber (SUS316) and carbon fiber (high strength type), epoxy and high density polyethylene resin. From this study, it has been found that shear strength are constant regardless of gauge length of pull-out test and coefficient of variation depend on fiber diameter. In addition, it has been found that the interfacial shear strength decreased with the increasing fiber diameter, and in all case, Weibull parameter (m) has approximately 1.2/C.O.V.

First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • The first diagonal cracking and ultimate shear load of reinforced girder made of ultra high performance fiber reinforced concrete (UHPFRC) were investigated in this paper. Eleven girders were tested in which eight girders failed in shear. A simplified formulation for the first diagonal cracking load was proposed. An analytical model to predict the ultimate shear load was formulated based on the two bounds theory. A fiber reinforcing parameter was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equation can be used for the first cracking status analysis, while the proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which can also be utilized for numerical limit analysis of reinforced UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

Seismic Fragility Analysis for Steel Fiber Applicability Assessment for Containment Structure of Nuclear Power Plant (원전 격납건물의 Steel Fiber 적용성 평가를 위한 지진취약도 분석)

  • Kim, Min Kyu;Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.381-388
    • /
    • 2012
  • In this study, a seismic risk analysis performed for an applicability assessment of steel fiber in containment structures. Steel fiber can increase tensile properties of concrete structures moreover compressive and shear capacity. But many of researches about steel fiber reinforced concrete structures are now only focused in axial load condition. Also it is very difficult to find an effort for application to containment structures in NPP. Therefore, in this study, seismic fragility assessment for a steel fiber reinforced concrete containment structure. As a result, a seismic fragility capacity improved according to increase of shear and ductile capacity of concrete. In the case of 1.0% of steel fiber volume fraction, seismic capacity increases as 10%. But very limited previous experimental results were used in this study, so various element tests were needed for more accurate investigation.

A Study on the Neurotoxic Effects of Tellurium on Murine Nervous System (랫드의 신경조직에 미치는 Tellurium의 독성에 관한 연구)

  • 김기석;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 1998
  • This study was conducted to examine the pathological changes of rat peripheral nervous system during exposure to tellurium known to be a demyelinating agent by using teasing nerve fiber method and quantitative light microscopic analysis by image analyzer. The pellet containing 1.2% of tellurium were fed for 3, 5, 7, 9, 13 days to male wistar rats (21 days old) and then neurologic symptom and the feature of nerve fiber myelination were studied. From this study, following results were obtained. In 3 days treated group, it showed various neurologic symptom and teased nerve fiber showed slight irregularity of the myeline sheath. In 5 days and 7 days treated groups, it showed the segmental demyetination in larger size fiber and widening of nodes of ranvier. In 9 days and 13 days treated groups, the remyelinated fibers were observed and it was generally small in size. We consequently suggest that teasing nerve fiber method and quantitative analysis of nerve fiber were useful pathologic screening method of neurotoxicity of the peripheral nervous system.

  • PDF

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.