A Quantitative Comparison of Fibroblasts, Collagen and Elastic Fiber Densities in the Young and Aged Rat Skin

  • Song, In-Yong (Department of Cosmetology, Mokpo Science College) ;
  • Jeong, Myung-A (Department of Health Science, Graduate School, Chosun University) ;
  • Lee, Jae-Hyoung (Department of Physical Therapy, Wonkwang Health Science College)
  • ;
  • ;
  • 이재형 (원광보건대학 물리치료과)
  • Published : 2007.03.31

Abstract

Computerized image processing and analysis system was used for quantitative assessment of skin tissue components in color histological sections. The purpose of this study was to determine that the changes in the collagen fiber density and elastic fiber density in dermis in the rat skin as aging. And also to determine that the correlation between fibroblast density and collagen fiber density and elastic fiber density in the aged rat skin. Ten weeks old ($130{\sim}150g$) eight and fifty-four weeks old ($300{\sim}350g$) eight female Sprague-Dawley rats were used. The full-thickness skin biopsy specimens were prepared serial sections and stained with hematoxylin and eosin, Masson's trichrome and Verhoeff-van Gieson. The collagen fiber and the elastic fiber were identified using the image analysis processing system and then calculated the collagen fiber density rate and the elastic fiber density rate in the dermis. It also identified fibroblast and calculated fibroblast density in the dermis. By using a Student's t-test, a decrease in the collagen fiber density rate (t=-4.650, P<0.001) and the elastic fiber density rate (t=-6.494, P<0.001) of dermis can be observed in aged rats as compared with the young rats. A Student's t-test showed a significantly less fibroblast density in the aged rats than the young rats (t=-4.497, P<0.001). There were significantly positive correlation between the fibroblast density and the collagen fiber density rate (r=.69, P<0.001) and the elastic fiber density rate (r=.91, P<0.001). These results indicate that the aging may decrease the collagen fiber density and elastic fiber density due to reduced the proliferative and synthetic activity of fibroblast in the dermis.

Keywords