• Title/Summary/Keyword: fiber/matrix bond

Search Result 54, Processing Time 0.021 seconds

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Optimum Geometry Factor of Structural Synthetic Fibers (구조용 합성섬유의 최적형상함수 결정)

  • 원종필;임동휘;박찬기;한일영;김방래
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.474-482
    • /
    • 2002
  • The purpose of the study is to establish an optimum geometry and optimum geometry factor through bond test of a structural synthetic fiber, which fully utilizes matrix anchoring without fiber fracturing with the maximum pullout resistance. Seven deformed structural synthetic fibers with widely different geometries were investigated and pullout test was conducted. Included parameters are seven different types of fiber and two of mortar matrixes. The test result shows that the crimped type structural synthetic fiber is significant improvement in the interface toughness(pullout energy) and pullout load. The pullout test was performed with various size of crimped type structural synthetic fiber in order to invest optimum geometry factor, In the basis of the test results, optimum geometry factor is established such as D=b$^{{\alpha}0{\alpha}}$h$^{λ{\beta}}$.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Study on the Effect of Resin Mixture Ratios on the Fatigue Crack Propagation Behavior and Mechanical Property in a FRMLs (수지 혼합비가 FRMLs의 피로균열전파거동과 기계적 성질에 미치는 영향에 관한 연구)

  • Kim, Cheol-Woong;Sohn, Se-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.149-154
    • /
    • 1999
  • FRMLs(Fiber Reinforced Metal Laminates) is a new type of hybrid materials. FRMLs consists of high strength metal and fiber which are laminated using a structural adhesive bond(epoxy resin). The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical property of Aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA) was cured with methylene dianiline(MDA) with or without accelerator(K-54). Eight kinds of resin mixture ratio were tested for the experiment ; five kinds of FRMLs(1))epoxy & curing agent) and three kinds of FRMLs(2)(epoxy & curing agent & accelerator). FRMLs(2) have a more effective characteristics on the fatigue crack propagation behavior and mechanical property than FRMLs(1)

  • PDF

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.