DOI QR코드

DOI QR Code

Optimum Geometry Factor of Structural Synthetic Fibers

구조용 합성섬유의 최적형상함수 결정

  • 원종필 (건국대학교 지역건설환경공학과) ;
  • 임동휘 (건국대학교 지역건설환경공학과) ;
  • 박찬기 (건국대학교 지역건설환경공학과) ;
  • 한일영 (SK건설 기술연구소) ;
  • 김방래 (SK건설 기술연구소)
  • Published : 2002.08.01

Abstract

The purpose of the study is to establish an optimum geometry and optimum geometry factor through bond test of a structural synthetic fiber, which fully utilizes matrix anchoring without fiber fracturing with the maximum pullout resistance. Seven deformed structural synthetic fibers with widely different geometries were investigated and pullout test was conducted. Included parameters are seven different types of fiber and two of mortar matrixes. The test result shows that the crimped type structural synthetic fiber is significant improvement in the interface toughness(pullout energy) and pullout load. The pullout test was performed with various size of crimped type structural synthetic fiber in order to invest optimum geometry factor, In the basis of the test results, optimum geometry factor is established such as D=b$^{{\alpha}0{\alpha}}$h$^{λ{\beta}}$.

본 연구의 목적은 섬유의 부착시험을 통하여 섬유의 파괴없이 최대 인발저항을 가지고 시멘트 모체 내에서 완전한 정착작용을하는 구조용 합성섬유의 최적형상과 최적형상함수를 도출하는데 있다. 7가지 다른 형상의 구조용 합성섬유를 조사하였고 부착시험을 수행하였다. 부착시험의 변수는 7가지의 다른 형상이고, 2종류의 시멘트 모르타르의 배합이다. 부착시험 결과, 7가지 다른 형상중 crimped type이 계면인성(인발에너지)와 인발하중에서 가장 우수한 성능을 보였다. Crimped type을 기본으로 하여 섬유의 주기와 높이를 바꾸어 부착시험을 실시한 결과 최적형상함수, D= $b^{{\alpha}ο{\alpha}}$ $h^{λ{\beta}}$ 를 도출하였다.

Keywords

References

  1. Bentur, A. and Mindess, S., "Fiber-Reinforced Cementitious Composites," Elsevier Applied Science, London, 1990, pp.1-11.
  2. Balaguru, P. N. and Shah, S. P., "Fiber-Reinforced Cement Composites," McGraw-Hill, Inc., New York, 1992, pp.2-8.
  3. Morgan, D. R., "Steel Fiber Reinforced Shotcrete for Support of Underground Openings in Canada," Concrete International, November 1991, pp.56-64.
  4. Morgan, D. R., Heere, R., McAskill, N., and Chan, C., "Comparative Evaluation of System Ductility of Mesh and Fibre Reinforced Shotcretes," Engineering Foundation, New York Sponsored Conference Shotcrete for Underground Support VIII Campos do Jordo, Brazil, April 1999, pp.1-23.
  5. Melvyn A. Galinat, "High Performance Polymer Fiber Reinforced Shotcrete," The Millennium Hotel, Sydney, Proceedings of the 1998 Australian Shotcrete Conference, 8-9 October 1998.
  6. Morgan, D. R., Heere, R., McAskill, N., and Chan, C., "System Ductillity of Mesh and Fibre Reinforced Shotcrete," Proceedings of the ACI Spring Convention, Chicago(USA), 1999.
  7. 이정렬, "강섬유 보강 숏크리트의 현장 적용성 연구," 96-C05-140, 삼성건설 기술연구소, 1996,10. pp.1-3.
  8. Clyne, T. W. and Watson, M. C., "Interfacial Mechanics in Fibre-Reinforced Metals," Composites Science and Technology, V. 42, 1991, pp.25-55. https://doi.org/10.1016/0266-3538(91)90011-D
  9. Naaman, A. E. and Najm, H., "Bond-Slip Mechanism of Steel Fibers in Concrete," ACI Materials Journal, V. 88, No. 2, Sept.-Oct. 1991, pp.135-145.
  10. Victor C. Li, and Henrik stangt, "Interface Property Characterization and Strengthening Mechanism in Fiber Reinforced Cement Based Composites," Advn. Cem. Bas. Mat. 6. 1997, pp.1-20. https://doi.org/10.1016/S1065-7355(97)00004-7
  11. Banthia et al. "Metal Fiber With Optimized Geometry for Reinforcing Cement-Based Materials," United States Patent, Patent Number : 5,443,918, Date of Patent : Aug. 22, 1995.
  12. Banthia et al. "Fiber Having Improved Sinusoidal Configuration, Concrete Reinfored Therewith and Related method." United States Patent, Patent Number : 5,981.630, Date of Patent : Nov.9, 1999.
  13. Synthetic Industries, "S-152 High Performance Polymer," (Tech. Notes), 1998.