• Title/Summary/Keyword: few data

Search Result 4,242, Processing Time 0.029 seconds

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.

Screening Vital Few Variables and Development of Logistic Regression Model on a Large Data Set (대용량 자료에서 핵심적인 소수의 변수들의 선별과 로지스틱 회귀 모형의 전개)

  • Lim, Yong-B.;Cho, J.;Um, Kyung-A;Lee, Sun-Ah
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • In the advance of computer technology, it is possible to keep all the related informations for monitoring equipments in control and huge amount of real time manufacturing data in a data base. Thus, the statistical analysis of large data sets with hundreds of thousands observations and hundred of independent variables whose some of values are missing at many observations is needed even though it is a formidable computational task. A tree structured approach to classification is capable of screening important independent variables and their interactions. In a Six Sigma project handling large amount of manufacturing data, one of the goals is to screen vital few variables among trivial many variables. In this paper we have reviewed and summarized CART, C4.5 and CHAID algorithms and proposed a simple method of screening vital few variables by selecting common variables screened by all the three algorithms. Also how to develop a logistics regression model on a large data set is discussed and illustrated through a large finance data set collected by a credit bureau for th purpose of predicting the bankruptcy of the company.

Recent advances in few-shot learning for image domain: a survey (이미지 분석을 위한 퓨샷 학습의 최신 연구동향)

  • Ho-Sik Seok
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.537-547
    • /
    • 2023
  • In many domains, lack of data inhibits adoption of advanced machine learning models. Recently, Few-Shot Learning (FSL) has been actively studied to tackle this problem. Utilizing prior knowledge obtained through observations on related domains, FSL achieved significant performance with only a few samples. In this paper, we present a survey on FSL in terms of data augmentation, embedding and metric learning, and meta-learning. In addition to interesting researches, we also introduce major benchmark datasets. FSL is widely adopted in various domains, but we focus on image analysis in this paper.

Intra-class Local Descriptor-based Prototypical Network for Few-Shot Learning

  • Huang, Xi-Lang;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.52-60
    • /
    • 2022
  • Few-shot learning is a sub-area of machine learning problems, which aims to classify target images that only contain a few labeled samples for training. As a representative few-shot learning method, the Prototypical network has been received much attention due to its simplicity and promising results. However, the Prototypical network uses the sample mean of samples from the same class as the prototypes of that class, which easily results in learning uncharacteristic features in the low-data scenery. In this study, we propose to use local descriptors (i.e., patches along the channel within feature maps) from the same class to explicitly obtain more representative prototypes for Prototypical Network so that significant intra-class feature information can be maintained and thus improving the classification performance on few-shot learning tasks. Experimental results on various benchmark datasets including mini-ImageNet, CUB-200-2011, and tiered-ImageNet show that the proposed method can learn more discriminative intra-class features by the local descriptors and obtain more generic prototype representations under the few-shot setting.

A Da7a-Recycling Sign Algorithm for Adaptive Equalization (데이터 재활용 방식을 적용한 부호 알고리듬)

  • 김남용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • A new Sign algorithm which has improved convergence speed is presented. The data-recycling technique, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is applied to Sign algorithm which has few multiplications. Sign algorithm has very few multiplications and is the most easily implemented, but it gives small rate of convergence relative to others. The proposed algorithm combines the advatage of Sign algorithm, few multiplications, and the virtue of Data-Recycling LMS algorithm, simplicity and fast convergence. The results of computer simulation show that the proposed algorithm has 2 times faster convergence rate than that of LMS algorithm. Comparing to Data-Recycling LMS algorithm, in similar convergence conditions, it requires half fewer multiplications.

Learning Deep Representation by Increasing ConvNets Depth for Few Shot Learning

  • Fabian, H.S. Tan;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.75-81
    • /
    • 2019
  • Though recent advancement of deep learning methods have provided satisfactory results from large data domain, somehow yield poor performance on few-shot classification tasks. In order to train a model with strong performance, i.e. deep convolutional neural network, it depends heavily on huge dataset and the labeled classes of the dataset can be extremely humongous. The cost of human annotation and scarcity of the data among the classes have drastically limited the capability of current image classification model. On the contrary, humans are excellent in terms of learning or recognizing new unseen classes with merely small set of labeled examples. Few-shot learning aims to train a classification model with limited labeled samples to recognize new classes that have neverseen during training process. In this paper, we increase the backbone depth of the embedding network in orderto learn the variation between the intra-class. By increasing the network depth of the embedding module, we are able to achieve competitive performance due to the minimized intra-class variation.

Few-shot learning using the median prototype of the support set (Support set의 중앙값 prototype을 활용한 few-shot 학습)

  • Eu Tteum Baek
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • Meta-learning is metacognition that instantly distinguishes between knowing and unknown. It is a learning method that adapts and solves new problems by self-learning with a small amount of data.A few-shot learning method is a type of meta-learning method that accurately predicts query data even with a very small support set. In this study, we propose a method to solve the limitations of the prototype created with the mean-point vector of each class. For this purpose, we use the few-shot learning method that created the prototype used in the few-shot learning method as the median prototype. For quantitative evaluation, a handwriting recognition dataset and mini-Imagenet dataset were used and compared with the existing method. Through the experimental results, it was confirmed that the performance was improved compared to the existing method.

Semi-supervised Model for Fault Prediction using Tree Methods (트리 기법을 사용하는 세미감독형 결함 예측 모델)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.107-113
    • /
    • 2020
  • A number of studies have been conducted on predicting software faults, but most of them have been supervised models using labeled data as training data. Very few studies have been conducted on unsupervised models using only unlabeled data or semi-supervised models using enough unlabeled data and few labeled data. In this paper, we produced new semi-supervised models using tree algorithms in the self-training technique. As a result of the model performance evaluation experiment, the newly created tree models performed better than the existing models, and CollectiveWoods, in particular, outperformed other models. In addition, it showed very stable performance even in the case with very few labeled data.

Few Samples Face Recognition Based on Generative Score Space

  • Wang, Bin;Wang, Cungang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5464-5484
    • /
    • 2016
  • Few samples face recognition has become a highly challenging task due to the limitation of available labeled samples. As two popular paradigms in face image representation, sparse component analysis is highly robust while parts-based paradigm is particularly flexible. In this paper, we propose a probabilistic generative model to incorporate the strengths of the two paradigms for face representation. This model finds a common spatial partition for given images and simultaneously learns a sparse component analysis model for each part of the partition. The two procedures are built into a probabilistic generative model. Then we derive the score function (i.e. feature mapping) from the generative score space. A similarity measure is defined over the derived score function for few samples face recognition. This model is driven by data and specifically good at representing face images. The derived generative score function and similarity measure encode information hidden in the data distribution. To validate the effectiveness of the proposed method, we perform few samples face recognition on two face datasets. The results show its advantages.

Few-shot Aerial Image Segmentation with Mask-Guided Attention (마스크-보조 어텐션 기법을 활용한 항공 영상에서의 퓨-샷 의미론적 분할)

  • Kwon, Hyeongjun;Song, Taeyong;Lee, Tae-Young;Ahn, Jongsik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.685-694
    • /
    • 2022
  • The goal of few-shot semantic segmentation is to build a network that quickly adapts to novel classes with extreme data shortage regimes. Most existing few-shot segmentation methods leverage single or multiple prototypes from extracted support features. Although there have been promising results for natural images, these methods are not directly applicable to the aerial image domain. A key factor in few-shot segmentation on aerial images is to effectively exploit information that is robust against extreme changes in background and object scales. In this paper, we propose a Mask-Guided Attention module to extract more comprehensive support features for few-shot segmentation in aerial images. Taking advantage of the support ground-truth masks, the area correlated to the foreground object is highlighted and enables the support encoder to extract comprehensive support features with contextual information. To facilitate reproducible studies of the task of few-shot semantic segmentation in aerial images, we further present the few-shot segmentation benchmark iSAID-, which is constructed from a large-scale iSAID dataset. Extensive experimental results including comparisons with the state-of-the-art methods and ablation studies demonstrate the effectiveness of the proposed method.