• Title/Summary/Keyword: ferrite content

Search Result 200, Processing Time 0.025 seconds

The Preparation of NiCuZn Ferrite Slurry Using the Water Mixed Binder System (수계 바인더를 이용한 NiCuZn Ferrite의 슬러리 제조)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Surface mount technology is the biggest theme in the area of deιIronic component. To miniatunze an electronic component, s such as ferrite chip inductor, the cer뼈lic wet process for green-sheet lamination and/or screen printing method through a s solvent medium system is widely used. The preparation and characterization of NiCuZn Ferrite (NCZF) shurry and the green s sheet using the water mixed binder system has been studied. The 21 vol% of NCZF slurry was prepared by a ball milling. The p polyacrylic vinyl copolymer (Mw; 60,000) was used as a binder. Th$\xi$ mixture of distilled water, isopropyl alcohol (IPA) and 2l butoxy ethanol was used as a dispersion medium. The water content of medium varied from about 40% to 80%. As the results. Thc disp$\xi$rston stability of the NCZF slurry was attributed to the free polymer rather than the electrostatic force of the particle. T The viscosity of the NCZF slurry was greatly depended on the ratio of water content in the medium.

  • PDF

Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio (Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가)

  • Kim, Yeon Hee;Jang, Ah Young;Kang, Dong Hoon;Ko, Dae Eun;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites

  • Chae, Kwang Pyo;Choi, Won-Ok;Kang, Byung-Sub;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • The crystallographic and magnetic properties of gallium-substituted cobalt ferrite ($CoGa_xFe_{2-x}O_4$) were investigated. The new material was synthesized using conventional ceramic methods, with gallium substituted for ferrite in the range of x = 0.0 to 1.0, in steps of 0.2. X-ray diffraction and M$\ddot{o}$ssbauer spectroscopy were used to confirm the presence of crystallized particles in the $CoGa_xFe_{2-x}O_4$ ferrite powders. All of the samples exhibited a single phase with a spinel structure, and the lattice parameters decreased as the gallium content increased. The particle size of the samples also decreased as gallium increased. For $x{\leq}0.4$, the M$\ddot{o}$ssbauer spectra of $CoGa_xFe_{2-x}O_4$ could be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites. However, for $x{\geq}0.6$, the M$\ddot{o}$ssbauer spectra could be fitted with two Zeeman sextets and one doublet. The variation in the M$\ddot{o}$ssbauer parameters and the absorption area ratio indicated a cation distribution of $(Co_{0.2-0.2x}Ga_xFe_{0.8-0.6x})[Co_{0.8+0.2x}Fe_{1.2-0.4x}]O_4$, and the magnetic behavior of the samples suggested that the increase in gallium content led to a decrease in the saturation magnetization and in the coercivity.

Effect of CaO and $SiO_2$ Addition on the Electromagnetic Properties of Mn-Zn Ferrites ($SiO_2$와 CaO 첨가가 Mn-Zn Ferrites의 전자기적 물성에 미치는 영향)

  • 서정주;신명승;한영호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1033-1039
    • /
    • 1995
  • The current experiment has quantitatively investigated the effect of the content of CaO and SiO2 on the microstructure, density, electrical resistivity, power loss and initial permeability of manganese zinc ferrites. The density increased initially with CaO and SiO2 content and the further addition showed an adverse effect. The excess addition of CaO and SiO2 developed a discontinuous grain growth with numerous pores inside grains and lowered the electrical resistivity. The initial permeability decreased with increasing the content of SiO2. The samples with relatively low power loss showed that half of the total loss at 10$0^{\circ}C$, 100 kHz and 2000 Gauss was due to the eddy current loss.

  • PDF

Effect of oxygen content on impact toughness of austenitic-and duplex stainless steel weld metal (오스나이트계 및 이상계스테인레스강 용착부의 산소가 충격인성에 미치는 영향)

  • 문영훈;김환태;허성도
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.38-45
    • /
    • 1987
  • An investigation was conducted to find out the factors influencing on the impact toughness of austenitic-and duplex stainless steel weld metal. Various welding process with commerically available consumables was adopted to get weld doposited metal. The oxygen content of each weld metal was very sensitiive to welding process, involving flux composition, shielding gas and structural features. The results of this study show tat the content of oxygen as an oxide inclusion significantly affects impact toughness, and .delta.-ferrite distribution is also correlated with resultant toughness value.

  • PDF

Variation of Toughness and Porosity Formation in Weld Metal with Al Content in Self-Shielded Arc Welding Wire (셀프실드용접 와이어의 Al 첨가량에 따른 용접금속 인성 및 기공형성 변화)

  • Bang, Kook-Soo;Park, Chan;Woong, Kil;Chang, Woong-Seong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.74-79
    • /
    • 2011
  • Three different welding wires were used to study the effects of Al content on weld metal toughness and porosity formation in self-shielded arc welding. Weld metal microstructure showed that while wire with 1.3% Al content contains coarse $\delta$-ferrite, wires with less than 0.5% Al content showed no such phase. In addition to the microstructural differences, cleanliness in weld metal was also different among wires. It showed that weld metal toughness was influenced by the $\delta$-ferrite formation, cleanliness and Ni addition. Even though wires with less than 0.5% Al content showed higher weld metal toughness, they showed relatively poor workability, forming porosities in weld bead in lower arc voltages.

Effects of Heat Treatment on the Composition and Magnetic Properties of the Hydrothermal-Synthesized Ba-Ferrite Powder (수열합성 Ba-Ferrite분말의 조성과 자성에 미치는 열처리 효과)

  • 이승호;김중호;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.737-746
    • /
    • 1989
  • After Ba-ferrite powders synthesized hydrothermally and its heated powders were dissolved partially with HCl treatment time, the BaO/Fe2O3 mole ratio of dissolved solutions and powders were measured by AAS, also, lattice constants, particle morphology and magnetic properties in HCl treated, heated and no-heated Ba-ferrite powders were abtained by means of XRD, SEM and VSM, respectively. From above analysis results, the effect of Ba/Fe mole ration in suspension(as starting material) on the BaO/Fe2O3 composition and particle characteristics of products were investigated, and the effect of heat treatment on magnetic properties of products examined. The composition, lattice constant and crystal phase of products depend on the Ba/Fe mole ratio in suspension. Ba content in surface or outer part of Ba-ferrite powder is higher than inner and heterogeneous, and the excess Ba ions in the inner part of particle move into the outer by heating, so that the mole ratio of BaO/Fe2O3 in the more jinner approaches more to the stoichiometric composition 1 : 6. The crystallinity, coercivity and saturation magnetization of products are increased by heat treatment, and the heat-treated samples synthesized hydrothermally in lower temperature are appreciated to have better powder characteristics.

  • PDF

Purification of Iron Oxides and Application to Magnetic Hard Ferrite

  • Kim, Jeong-Seog;Chou, Kyoung-Ho;Kim, Jai-Young
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.125-130
    • /
    • 1996
  • Hematite iron ore and waste iron oxide sludge containing about 3-5 wt% $SiO_2$ were purified by three types of method developed on the basis of the Bayer process which is known as the purification process of bauxite ore. The basic principle of the developed methods lies in the fact that the impurities contained in the iron oxides, such as $SiO_2$ and $Al_2O_3$ are soluble in the alkaline reagents. Reaction of the raw materials with KOH was done in pressure vessel, at atmospheric pressure, and by both of these two. By the pressure vessel method $SiO_2$ content was reduced to below 0.5 wt% in the waste iron oxide sludge, while, in iron ore, $SiO_2$ remained at 2-3 wt%. The atmospheric pressure reaction rendered the waste iron oxide sludge $SiO_2$ content below 0.5wt% when the reaction temperature increased to above 90$0^{\circ}C$. The combined method of two previous methods was the most effective process and rendered the refined iron oxide about 300-400ppm of $SiO_2$. Using some refined iron oxides, Ba-ferrite was produced and magnetic properties were measured. The highest quality of magnetic properties obtained in this study were Br=2.09 G, bHc=1.99 KOe, iHc=4.54 KOe, $(BH)_{max}$=1.06 MGOe. Effect of sintering condition and chemical composition will be discussed.

  • PDF

Fabrication of Barium Oxide Ferrite Magnet-II (바리움 훼라이트 자석의 시작 - II)

  • 백용현
    • 전기의세계
    • /
    • v.21 no.6
    • /
    • pp.17-20
    • /
    • 1972
  • The magnetic properties of Ba-Ferrite ( $M^{+2}$O.nF $e_{2}$ $O_{3}$ is highly improved under the condition of composition ratio n=4.4 when B $i_{2}$ $O_{3}$ is added to Ferrite, the adding amount and sintering temperature which affect the magnetic properties were investigated and the following results; were obtained; 1. Magnetic properties are varied with B $i_{2}$ $O_{3}$ content and singering temperature, and coercive force and residual induction can be improved with B $i_{2}$ $O_{3}$. 2. The optimal content of B $i_{2}$ $O_{3}$ amount is about 4 mol %, 3. Without the addition of B $i_{2}$ $O_{3}$, the optimal sintering temperature is about 1300.deg. C, but when 4 mol % of B $i_{2}$ $O_{3}$ is added, the optimal sintering temperature falls to the range of 900.deg. C to 1100.deg. C and it also improves magnetic properties. 4. Residual induction increases as the singering temperature is raised to 1100.deg. C. Coercive force also increased as the sintering temperature is raised to 1000.deg. C, but it rapidly decreases when sintering temperature goes beyond 1000.deg. C. 5. Only a negligible change may be noticed in the decrease of Curie temperature by the addition of about 4 mol % of B $i_{2}$ $O_{3}$.

  • PDF