• Title/Summary/Keyword: fermentation parameters

Search Result 335, Processing Time 0.037 seconds

Flow Properties of Traditional Kochujang : Effect of Fermentation Time (숙성기간에 따른 재래 고추장의 유동성 변화)

  • 유병승;최원석;류영기
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.554-558
    • /
    • 1999
  • Flow properties of traditional kochujang at various fermentation times(0~12 weeks) were determined with rotational cylindrical(RC) and serrated plate plate(PP) viscometer. Magnitudes of consistency index(K) of power law model and Cassson parameters(yield stress and viscosity) measured by PP viscometer were higher than those using RC viscometer. All kochujang samples during fermentation were much shear thinning with values of flow behavior index(n) as low as 0.2~0.34. K value and Casson yield stress measured by PP viscometer had good correlations(r=0.94; r=0.91) with fermentation time. No significant changes in flow model parameters measured by RC viscometer were observed for kochu jang during fermentation. Magnitudes of flow model parameters measured by PP viscometer more closely correlated with fermantation times of kochujang than did RC viscometer.

  • PDF

Investigation of Dietary Lysophospholipid (LipidolTM) to Improve Nutrients Availability of Diet with In Vitro Rumen Microbial Fermentation Test

  • Cho, Sangbuem;Kim, Dong Hyun;Hwang, Il Hwan;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • This study was conducted to investigate the effect of biological membrane transfer modifier, lysophospholipd (LPLs) on the parameters from in vitro rumen simulated fermentation. Commercially available LPLs product (Lipidol$^{TM}$) was supplemented into experimental diets which consisted of orchard grass and concentrate diet (60:40) in different levels (0.1%, 0.3% and 0.5%). Then in vitro rumen simulated fermentation was performed. Although, a declining trend of pH was found in treatments, all pH values were detected in a range relevant to normal rumen fermentation. Gas production, ammonia nitrogen and total VFA production were greatly influenced by the supplementation of LPLs. All parameters were increased along with increased levels of LPLs in diet. As a result, 0.1% of Lipidol$^{TM}$ is recommended based on the determined in vitro rumen fermentative parameters in this study.

Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation

  • Nahariah, N.;Legowo, A.M.;Abustam, E.;Hintono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.855-861
    • /
    • 2015
  • Lactobacillus plantarum is used for fermentation of fish products, meat and milk. However, the utilization of these bacteria in egg processing has not been done. This study was designed to evaluate the potential of fermented egg albumen as a functional food that is rich in angiotensin I-converting enzyme inhibitors activity (ACE-inhibitor activity) and is antihypertensive. A completely randomized design was used in this study with six durations of fermentation (6, 12, 18, 24, 30, and 36 h) as treatments. Six hundred eggs obtained from the same chicken farm were used in the experiment as sources of egg albumen. Bacteria L. plantarum FNCC 0027 used in the fermentation was isolated from cow's milk. The parameters measured were the total bacteria, dissolved protein, pH, total acid and the activity of ACE-inhibitors. The results showed that there were significant effects of fermentation time on the parameters tested. Total bacteria increased significantly during fermentation for 6, 12, 18, and 24 h and then decreased with the increasing time of fermentation to 30 and 36 h. Soluble protein increased significantly during fermentation to 18 h and then subsequently decreased during of fermentation to 24, 30, and 36 h. The pH value decreased markedly during fermentation. The activities of ACE-inhibitor in fermented egg albumen increased during fermentation to 18 h and then decreased with the increasing of the duration of fermentation to 24, 30, and 36 h. The egg albumen which was fermented for 18 h resulted in a functional food that was rich in ACE-inhibitor activity.

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Application of Oxygen Uptake Rate Measured by a Dynamic Method for Analysis of Related Fermentation Parameters in Cyclosporin A Fermentation:Suspended and Immobilized Cell Cultures

  • Chun, Gie-Taek;Agathos, S.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1055-1060
    • /
    • 2001
  • Experimental data for the on-line estimation of cell concentration and growth rate are presented. For this purpose, we utilized the on-line calculation of the oxygen uptake rate (OUR), which was derived from a liquid phase dynamic mass balance for the oxygen during the active growth phase in cyclosporin A (CyA) fermentation. The cell yield coefficient, based on the oxygen $(Y_{x/o})$for both suspended and immobilized cells of Tolypocladium inflatum, was estimated as $1.9 gDCW/gO_2$ from a very good linear correlation between the cell mass produced and the total oxygen consumed. The calculated yield showed a good agreement with the value of $(Y_{x/o})$ generated from the correlation between the cell growth rate and the oxygen uptake rate. In addition, further experimental data are given, which were also applied to determine the specific oxygen uptake rate of T. inflatum cells during the exponential phase of CyA fermentation. A theoretical basis for the analysis of these fermentation parameters is also provided.

  • PDF

Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation

  • Tahir Khan;Dong-Hai Hou;Jin-Na Zhou;Yin-Long Yang;Hong Yu
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.157-163
    • /
    • 2023
  • Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 ℃, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 ℃, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.

The Optimization of Fermentation Parameters for Heterologous Protein Productivity Enhancement with Pichia pastoris (Methylotrophic Yeast를 이용한 외래단백질 발현에서의 발효 변수 최적화)

  • 강환구;이문원;전희진
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.325-330
    • /
    • 1998
  • The methylotrophic yeast, Pichia pastoris, is known to be a potential host to offer many advantages for production of recombinant proteins. Fermentation parameters were optimized to enhance the heterologous ${\beta}$-galactosidase productivity with P. pastoris. Optimum concentration of methanol, used as inducer, was observed to be 8 g/L and the extent of repression of AOX1 promoter by glycerol was lower than by glucose. The degradation of the gene product ${\beta}$-galactosidase by protease was inhibited as the pH increased from 5 to 8 and the yeast extract(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%). Induction method, in which methanol is just added to fermentation medium without centrifugation, was found to be as much effective as the one with centrifugation.

  • PDF

Optimal Conditions for Propagation in Bottom and Top Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Lee, Si-Kyung;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2008
  • The method of yeast propagation has an influence on yeast physiology, fermentation ability, flocculation rate, and taste stability of beer. In order to find optimal conditions for propagation, several parameters were investigated in combinations. The bottom brewing yeast grown at $10^{\circ}C$ indicated that a higher flocculation capacity during the $1^{st}$ fermentation. However, the taste stability and the aroma profile were not affected by parameters of propagation investigated. The beer quality was rather affected by storage duration. In addition, a correlation between tasting and chemiluminescence was found at the beer, which was produced using bottom brewing yeast. The propagation at $10-25^{\circ}C$ with addition of zinc ion indicated the best condition to improve fermentation ability, flocculation rate, and filterability for bottom brewing yeast, whereas the propagation at $30^{\circ}C$ with addition of zinc ion showed the best condition to increase fermentation ability for top brewing yeasts.

Effect of Precultural and Nutritional Parameters on Compactin Production by Solid-State Fermentation

  • Nikhil S., Shaligram;Singh, Sudheer Kumar;Singhal, Rekha S.;Szakacs, George;Pandey, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.690-697
    • /
    • 2009
  • In the present study, production of compactin by Penicillium brevicompactum WA 2315 was studied. In the first step, various precultural parameters were studied by substituting one factor at a time. Subsequently, the effect of maltodextrin DE 18 on compactin production was studied. The optimized parameters gave maximum compactin production of 850 ${\mu}g/gds$as compared with 678 ${\mu}g/gds$before optimization. Statistical study was performed to further improve the production and develop a robust model. An improved yield of 950 ${\mu}g/gds$was obtained using the conditions proposed by the experimental model. The present study emphasizes the importauce of precultural and nutritional parameters on the production of compactin, and further confirms the usefulness of solid-state fermentation for the production of industrially important secondary metabolites. It also confirms that complex nitrogen sources such as oil cakes can be used for the production of compactin.

Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation (고체발효에서 반응표면분석법을 이용한 구연산 생산 최적화)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.879-884
    • /
    • 2012
  • In this present study, Aspergillus niger NRRL 567 was cultivated on an inert support material and the effects of various fermentation parameters including temperature, nutrient solution pH, inoculation level, and moisture content were observed and optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM), sequentially. It was found that the incubation temperature of $30^{\circ}C$ with 75% moisture content, nutrient solution pH of 7.1 and inoculation level of $4.0{\times}10^6$ spores/ml were the most favorable. Again, fermentation parameters were optimized using RSM. The determined optimum condition is $26.5^{\circ}C$, pH 9.9, 75.1%, and $6.0{\times}10^6$ spores/ml. Under this optimized condition, A. niger NRRL 567 produced 118.8 g citric acid/kg dry peat moss at 72 hr. Maximum citric acid production of optimized condition by RSM represented a 1.6-fold increase compared to that obtained from control experiment.