• 제목/요약/키워드: fermentation inhibitor

검색결과 107건 처리시간 0.023초

Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation

  • Nahariah, N.;Legowo, A.M.;Abustam, E.;Hintono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.855-861
    • /
    • 2015
  • Lactobacillus plantarum is used for fermentation of fish products, meat and milk. However, the utilization of these bacteria in egg processing has not been done. This study was designed to evaluate the potential of fermented egg albumen as a functional food that is rich in angiotensin I-converting enzyme inhibitors activity (ACE-inhibitor activity) and is antihypertensive. A completely randomized design was used in this study with six durations of fermentation (6, 12, 18, 24, 30, and 36 h) as treatments. Six hundred eggs obtained from the same chicken farm were used in the experiment as sources of egg albumen. Bacteria L. plantarum FNCC 0027 used in the fermentation was isolated from cow's milk. The parameters measured were the total bacteria, dissolved protein, pH, total acid and the activity of ACE-inhibitors. The results showed that there were significant effects of fermentation time on the parameters tested. Total bacteria increased significantly during fermentation for 6, 12, 18, and 24 h and then decreased with the increasing time of fermentation to 30 and 36 h. Soluble protein increased significantly during fermentation to 18 h and then subsequently decreased during of fermentation to 24, 30, and 36 h. The pH value decreased markedly during fermentation. The activities of ACE-inhibitor in fermented egg albumen increased during fermentation to 18 h and then decreased with the increasing of the duration of fermentation to 24, 30, and 36 h. The egg albumen which was fermented for 18 h resulted in a functional food that was rich in ACE-inhibitor activity.

Production of a Platelet Aggregation Inhibitor, Salmosin, by High Cell Density Fermentation of Recombinant Escherichia coli

  • Seo, Myung-Ji;Choi, Hak-Jong;Chung, Kwang-Hoe;Pyun, Yu-Ryang
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1053-1056
    • /
    • 2011
  • Optimal conditions for a high cell density fermentation were investigated in a recombinant Escherichia coli producing salmosin, a platelet aggregation inhibitor. The optimized carbon and nitrogen sources were glycerol 10 g/l, yeast extract 30 g/l, and bacto-tryptone 10 g/l, yielding the dry cell weight (DCW) of 10.61 g/l in a 500 ml flask culture. The late-stage induction with 1% L-arabinose in a 5 l jar fermentor showed the highest DCW of 65.70 g/l after 27 h of the fed-batch fermentation. Around 2,200 mg/l of the protein was expressed as an inclusion body that was then refolded to obtain the active salmosin of 96 mg/l. We also confirmed the inhibitory activity against platelet aggregation of the active salmosin from the high cell density fermentation.

Streptomyces chromofuscus SMF28을 이용한 Cathepsin B 저해물질의 발효생산 및 특성분석 (Production and Characterization of Cathepsin B Inhibitor from Streptomyces chromofuscus SMF28)

  • 이현숙;김인섭;윤성준;이계준
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.602-608
    • /
    • 1995
  • The aim of the present research program was to construct an optimum fermentation system and to characterize the properties of cathepsin B inhibitor from Streptomyces chromofuscus SMF28. Glucose and casitone were proved to be good carbon source and nitrogen source, respectively. The production of inhibitor was high at lower concentration than 10 mM of inorganic phosphate. The optimum temperature and pH for the production of inhibitor were 30$\circ$C and pH 7, respectively. The production of inhibitor was related to mycelial growth and was affected by medium composition. The inhibitor in culture filtrate of S. chromofuscus SMF28 was purified by butanol extraction, silica gel chromatography, Amberlite IRC-50 (H$^{+}$ form) chromatography, preparative TLC, and preparative HPLC. From amino acid analysis and UV, IR, $^{1}$H-NMR spectroscopic analysis, the inhibitor was identified as a peptide containing valine and phenylalanine derivative.

  • PDF

Streptomyces fradiae에서 분리한 단백질 분해효소 저해물질 생성의 동력학적 특성 (The fermentation kinetics of protease inhibitor production by streptomyces fradiae)

  • 이병규;정영화;이계준
    • 미생물학회지
    • /
    • 제28권3호
    • /
    • pp.264-267
    • /
    • 1990
  • The objectives of the current studies were to establish the optimal conditions for the production of extracellular protease inhibitor in a strain of Streptomyces fradiae. As results, it was found that cell specific growth rate was very critical for the production of protease inhibitor and the optimum specific growth rate was found to be 0.05 h$^{-1}$ . Dissolved oxygen tension and pH were also important to regulate the inhibitor production. The inhibitory mode of the purified inhibitor to .alpha.-chymotrypsin was found to be competitive (K$_{i}$=5.5*10$^{-7}$ M). One mole of inhibitor could bind two moles of .alpha.-chymotrypsin and the complex has very low dissociation constant.t.

  • PDF

Fermentation of MR-387A and H, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387 : Carbon and Nitrogen Catabolite Repression of Inhibitor Formation

  • Kho, Yung-Hee;Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Choong-Hwan;Lee, Ho-Jae;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.158-162
    • /
    • 1995
  • The effect of carbon and nitrogen sources on the production of novel aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. High D-glucose and ammonia concentrations (5$\%$ and 1$\%$, respectively) exerted a negative influence on the inhibitor formation. The suppressive effect of glucose on the inhibitor formation is probably caused by an effect of medium pH rather than that of cyclic AMP. To establish the optimum conditions for inhibitor overproduction, various nitrogen sources and ammonium ion-trapping agents were examined. The use of ammonia slow-releasing nitrogen sources such as soybean meal and fish meal, or ammonium ion-trapping agents such as kaoline, celite, and natural zeolite achieved the enhancement of inhibitor production. These results also indicate that inhibitor formation is affected by ammonium ion repression.

  • PDF

Angiotensin Converting Enzyme(ACE) 저해제를 생성하는 방선균 분리주의 동정 및 최적 발효조건 (Identification and Culture Conditon of an Actionomycetes Stranin Producing an Angiotensin Converting Enzyme Inhibitor)

  • 문성훈;하상철;이동선;김종국;홍순덕
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.439-445
    • /
    • 1995
  • Identification of Actinomycetes isolate strain SH-8002, a producer of ACE inhibitor, based on procedures employed in the international Streptomyces project. The strain, designated as SH-8002, was identified as Streptomyces zoamyceticus SH-8002 based on its morphological, physiological, biochemical and chemotaxonomic characteristics. The ACE inhibitor produced by the strain was highly achieved in fermentation medium condition that was 1% soluble starch, 0.5% tryptone, 0.2% K$_{2}$HPO$_{4}$, 0.2% CaCO$_{3}$, 0.1% NaCl, pH 8.0 at 30$\circ$C for 144 hrs.

  • PDF

Fermentation of MR-387A and B, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387: Phosphate Repression of Inhibitor Formation

  • YUNG-HEE KHO;CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE,;SU-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.213-217
    • /
    • 1995
  • The effect of inorganic phosphate on the fermentative production of aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. With inorganic phosphate concentrations higher than 0.78 mM, an inverse correlation was found between the maximum inhibitor production and the initial phosphate concentration added. Growth sensitivity of this actinomycete to arsenate, a phosphate analogue, and the use of magnesium carbonate, a phosphate-trapping agent, suggested that the inhibitor formation was under phosphate repression. Exogenous ATP further increased the degree of phosphate interference in both phosphate-repressed and non repressed culture conditions. The use of a phosphate analogue and a protein synthesis inhibitor also suggested that the phosphate itself repressed inhibitor formation.

  • PDF

Saccharomyces cerevisiae Strain Improvement Using Selection, Mutation, and Adaptation for the Resistance to Lignocellulose-Derived Fermentation Inhibitor for Ethanol Production

  • Jang, Youri;Lim, Younghoon;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.667-674
    • /
    • 2014
  • Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with ${\gamma}$-irradiation, and among the survivals, KL5-G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5-G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.

Rhizopus oligosporus 발효에 따른 국산 콩의 아미노산, 피틴산 및 트립신 저해제 함량 (Amino Acid, Phytic Acid, and Trypsin Inhibitor Contents of Korean Soybeans Before and After Fermentation by Rhizopus oligosporus)

  • 박혜영;송하나;김현주;서민정;최혜선;박지영;심은영;김홍식
    • 한국식품영양학회지
    • /
    • 제36권5호
    • /
    • pp.415-424
    • /
    • 2023
  • This study investigated the nutritional characteristics of before and after fermentation of domestic soybean (Glycine max L.) by Rhizopus oligosporus. The soybean storage proteins, β-conglycinin (11S globulin) and glycinin (7S globulin), were the most abundant in Seonyu (SY) and Danbaegkong (DBK), with concentrations of 253.4 mg/g and 193.0 mg/g, respectively. For 11S/7S related to sulfur-containing amino acid, DBK had a value of 0.95, making it the most excellent nutritionally among all the cultivars. The free amino acid content significantly increased from 0.04~10.45 mg/g before fermentation to 1.37~16.95 mg/g after fermentation, and the essential amino acid composition increased, confirming an improvement in protein quality after fermentation. Phytic acid, known as a nutritional inhibitor of soybeans, decreased from 1.66~2.13 g/100 g before fermentation to 0.90~1.58 g/100 g after fermentation, suggesting that mineral absorption inhibition was alleviated. In addition, the trypsin inhibitor content is suppressed by 76.20% to 81.25% after fermentation, which is expected to improve protein utilization in the body. This study confirmed some properties of fermented products by Rhizopus oligosporus using domestic soybeans, and these results are presented to serve as the basic data for establishing new uses of Korean soybean cultivars.