DOI QR코드

DOI QR Code

Amino Acid, Phytic Acid, and Trypsin Inhibitor Contents of Korean Soybeans Before and After Fermentation by Rhizopus oligosporus

Rhizopus oligosporus 발효에 따른 국산 콩의 아미노산, 피틴산 및 트립신 저해제 함량

  • Hye-Young Park (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Hana Song (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Hyun-Joo Kim (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Min-Jung Seo (Dept. of Management Innovation and Legal Affairs Division, RDA) ;
  • Hye Sun Choi (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Jiyoung Park (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Eun-Yeong Sim (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA) ;
  • Hong-Sik Kim (Dept. of Central Area Crop Science, National Institute of Crop Science, RDA)
  • 박혜영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 송하나 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김현주 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 서민정 (농촌진흥청 혁신행정법무담당관실) ;
  • 최혜선 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 박지영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 심은영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김홍식 (농촌진흥청 국립식량과학원 중부작물부)
  • Received : 2023.09.12
  • Accepted : 2023.10.20
  • Published : 2023.10.31

Abstract

This study investigated the nutritional characteristics of before and after fermentation of domestic soybean (Glycine max L.) by Rhizopus oligosporus. The soybean storage proteins, β-conglycinin (11S globulin) and glycinin (7S globulin), were the most abundant in Seonyu (SY) and Danbaegkong (DBK), with concentrations of 253.4 mg/g and 193.0 mg/g, respectively. For 11S/7S related to sulfur-containing amino acid, DBK had a value of 0.95, making it the most excellent nutritionally among all the cultivars. The free amino acid content significantly increased from 0.04~10.45 mg/g before fermentation to 1.37~16.95 mg/g after fermentation, and the essential amino acid composition increased, confirming an improvement in protein quality after fermentation. Phytic acid, known as a nutritional inhibitor of soybeans, decreased from 1.66~2.13 g/100 g before fermentation to 0.90~1.58 g/100 g after fermentation, suggesting that mineral absorption inhibition was alleviated. In addition, the trypsin inhibitor content is suppressed by 76.20% to 81.25% after fermentation, which is expected to improve protein utilization in the body. This study confirmed some properties of fermented products by Rhizopus oligosporus using domestic soybeans, and these results are presented to serve as the basic data for establishing new uses of Korean soybean cultivars.

Keywords

Acknowledgement

본 논문은 농촌진흥청 국립식량과학원 연구개발 과제(PJ016089032022)의 지원으로 이루어진 것임.

References

  1. Abu-Salem FM, Mohamed RK, Gibriel AY, Rasmy NMH. 2014. Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. Int J Biol Agric Biosyst Life Sci Eng 8:296-301
  2. Ahmad A, Ramasamy K, Jaafar SM, Majeed ABA, Mani V. 2014. Total isoflavones from soybean and tempeh reversed scopolamine-induced amnesia, improved cholinergic activitiesand reduced neuroinflammation in brain. Food Chem Toxicol 65:120-128 https://doi.org/10.1016/j.fct.2013.12.025
  3. Aoki H, Nakatsuka-Mori T, Ueno Y, Nabeshima Y, Oyama H. 2023. Analysis of functional ingredients of tempe-like fermented Moringa oleifera seeds (Moringa tempe) prepared with Rhizopus species. J Biosci Bioeng 135:306-312 https://doi.org/10.1016/j.jbiosc.2023.01.011
  4. Azeke MA, Fretzdorff B, Buening-Pfaue H, Betsche T. 2007. Comparative effect of boiling and solid substrate fermentation using the tempeh fungus (Rhizopus oligosporus) on the flatulence potential of African yambean (Sphenostylis stenocarpa L.) seeds. Food Chem 103:1420-1425 https://doi.org/10.1016/j.foodchem.2006.10.058
  5. Beal L, Mehta T. 1985. Zinc and phytate distribution in peas. Influence of heat treatment, germination, pH, substrate, and phosphorus on pea phytate and phytase. J Food Sci 50: 96-100 https://doi.org/10.1111/j.1365-2621.1985.tb13285.x
  6. Carvalho AW, Natal DIG, Silva CO, Dantas MIS, Barros EG, Ribeiro SMR, Costa NMB, Martino HSD. 2013. Heat-treatment reduces anti-nutritional phytochemicals and maintains protein quality in genetically improved hulled soybean flour. Food Sci Technol 33:310-315 https://doi.org/10.1590/S0101-20612013005000048
  7. Cuevas-Rodríguez EO, MiIan-Carrillo J, Mora-Escobedo R, Cardenas-Valenzuela OG, Reyes-Moreno C. 2004. Quality protein maize (Zea mays L.) tempeh flour through solid state fermentation process. LWT Food Sci Technol 37:59-67 https://doi.org/10.1016/S0023-6438(03)00134-8
  8. Cuevas-Rodriguez EO, Verdugo-Montoya NM, Angulo-Bejarano PI, Milan-Carrillo J, Mora-Escobedo R, Bello-Perez LA, Garzon-Tiznado JA, Reyes-Moreno C. 2006. Nutritional properties of tempeh flour from quality protein maize (Zea mays L.). LWT Food Sci Technol 39:1072-1079 https://doi.org/10.1016/j.lwt.2005.07.003
  9. Drabo MS, Savadogo A, Raes K. 2023. Effects of tempeh fermentation using Rhizopus oryzae on the nutritional and flour technological properties of Zamne (Senegalia macrostachya seeds): Exploration of processing alternatives for a hardto-cook but promising wild legume. Food Biosci 54:102823
  10. Egounlety M, Aworh OC. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J Food Eng 56:249-254 https://doi.org/10.1016/S0260-8774(02)00262-5
  11. Ha BK. 2023. Recent soybean industry trends. Soybean Ind Inf 6:4-14
  12. Hamerstrand GE, Black LT, Glover JD. 1981. Trypsin inhibitors in soy products: Modification of the standard analytical procedure. Cereal Chem 58:42-45
  13. Han N, Woo KS, Lee JY, Song SB, Lee YY, Kim M, Kang MS, Kim HJ. 2022. Comparison of physicochemical characteristics, functional compounds, and physiological activities in Adzuki bean cultivars. J Korean Soc Food Sci Nutr 51:428-438 https://doi.org/10.3746/jkfn.2022.51.5.428
  14. Henderson JW, Ricker RD, Bidlingmeyer BA, Woodward C. 2000. Rapid, Accurate, Sensitive and Reproducible HPLC Analysis of Amino Acids. pp.1-10. Agilent Technologies
  15. Huang H, Kwok KC, Liang H. 2004. Effects of tea polyphenols on the activities of soybean trypsin inhibitors and trypsin. J Sci Food Agric 84:121-126 https://doi.org/10.1002/jsfa.1610
  16. Jung DH. 2006. Fermented Soybean Food. pp.709-735. Hongigjae. 
  17. Kim CT, Kim CJ, Kim DC, Kwon TW. 1990. Tempeh fermentation from a mixture of soybean and sorghum grain. Korean J Food Sci Technol 6:668-674
  18. Kim HJ, Seo JH, Won DJ, Han N, Lee JY, Kim M, Lee YY, Kang MS. 2022. Comparison of physicochemical properties of seed protein in soybean cultivars. J Korean Soc Food Sci Nutr 51:1048-1055 https://doi.org/10.3746/jkfn.2022.51.10.1048
  19. Kim JT. 1986. Temph: Soybean fermented food in the spotlight. Korea Soybean Dig 3:28-36
  20. Kim YH, Kim SD, Hong EH. 1994. 11S and 7S globulin fractions in soybean seed and soycurd characteristics. Korean J Crop Sci 39:348-352
  21. Kim YM, Kim YW. 1998. Changes of enzyme activity, trypsin inhibitor, tannin and phytic acid during heat treatment of soybean. Korean J Food Sci Technol 30:1012-1017
  22. Lee HJ, Moon TH, Noh BS, Chang PS, Baek HH, Lee KK, Kim SJ, Yoo SH, Lee GW. 2014. Food Chemistry. pp.190-193. Soohaksa
  23. Lee JK. 1988. Review of nutritional characteristics of tempeh and its usage. Korea Soybean Dig 5:10-22
  24. Lei MG, Bassette R, Reeck GR. 1981. Effect of cysteine on heat inactivation of soybean trypsin inhibitors. J Agric Food Chem 29:1196-1199 https://doi.org/10.1021/jf00108a025
  25. Liu K. 1997. Soybeans: Chemistry, Technology, and Utilization. pp.1-12. Springer Science + Business Media, B.V., Dordrecht
  26. Liu K. 2019. Soybean trypsin inhibitor assay: Further improvement of the standard method approved and reapproved by American Oil Chemists' Society and American Association of Cereal Chemists International. J Am Oil Chem Soc 96:635-645 https://doi.org/10.1002/aocs.12205
  27. Liu L, Huang Y, Zhang X, Zeng J, Zou J, Zhang L, Gong P. 2023. Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocoll 136:108252
  28. Mujoo R, Trinh DT, Ng PKW. 2003. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem 82:265-273 https://doi.org/10.1016/S0308-8146(02)00547-2
  29. Nakajima N, Nozaki N, Ishihara K, Ishikawa A, Tsuji H. 2005. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J Biosci Bioeng 100:685-687 https://doi.org/10.1263/jbb.100.685
  30. Ogawa T, Tayama E, Kitamura K, Kaizuma N. 1989. Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max L.). Jpn J Breed 39:137-147 https://doi.org/10.1270/jsbbs1951.39.137
  31. Park ES, Yoon S. 1983. The changes of phytic acid content and its interactions with protein and minerals in the preparation of tempeh. Korean J Nutr 16:281-286
  32. Park HY, Kim HJ, Seo JH, Choi HS, Park J, Sim EY, Kim MJ, Kim HS. 2022. In vitro digestibility and amino acid score of Rhizopus oligosporus fermented products by domestic soybean (Glycine max L.) cultivars. Korean J Food Nutr 35:435-444
  33. Randhir R, Vattem D, Shetty K. 2004. Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innov Food Sci Emerg Technol 5:235-244 https://doi.org/10.1016/j.ifset.2004.01.003
  34. Rural Development Administration [RDA]. 2021. Agricultural Technology Guide 116: Soybean. pp.18-23. Rural Development Administration
  35. Reddy NR, Pierson MD. 1994. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27:281-290 https://doi.org/10.1016/0963-9969(94)90096-5
  36. Refaat AA, Hemmat MA, Shimaa AA, Emam AM. 2018. Production and evaluation of soybean tempeh to use as a ready to eat meal in Egyptian hotels. Asian Food Sci J 5:1-9 https://doi.org/10.9734/AFSJ/2018/43681
  37. Reyes-Moreno C, Cuevas-Rodriguez EO, Milan-Carrillo J, Cardenas-Valenzuela OG, Barron-Hoyos J. 2004. Solid state fermentation process for producing chickpea (Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product. J Sci Food Agric 84:271-278 https://doi.org/10.1002/jsfa.1637
  38. Romulo A, Surya R. 2021. Tempe: A traditional fermented food of Indonesia and its health benefits. Int J Gastron Food Sci 26:100413
  39. Ryoo SH, Kim SR, Kim KT, Kim SS. 2004. Isoflavone, phytic acid and oligosaccharide contents of domestic and imported soybean cultivars in Korea. Korean J Food Nutr 17:229-235
  40. Sessa DJ, Haney JK, Nelsen TC. 1990. Inactivation of soybean trypsin inhibitors with ascorbic acid plus copper. J Agric Food Chem 38:1469-1474 https://doi.org/10.1021/jf00097a008
  41. Song H, Seo MJ, Kim HS, Choi HS, Park J, Sim EY, Park HY. 2021. Physico-chemical properties of Korean soybean (Glycine max L.) and tempeh by Rhizopus sp. from soybean cultivars. J East Asian Soc Diet Life 31:281-290 https://doi.org/10.17495/easdl.2021.10.31.5.281
  42. Song J, Liu C, Li D, Gu Z. 2013. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Ind Crops Prod 50:743-749 https://doi.org/10.1016/j.indcrop.2013.08.064
  43. Stewart OJ, Raghavan GSV, Orsat V, Golden KD. 2003. The effect of drying on unsaturated fatty acids and trypsin inhibitor activity in soybean. Process Biochem39:483-489
  44. Sudarmadji S, Markakis P. 1977. The phytate and phytase of soybean tempeh. J Sci Food Agric 28:381-383 https://doi.org/10.1002/jsfa.2740280410
  45. Sugai-Guerios MH, Balmant W, Krieger N, Furigo A Jr, Mitchell DA. 2016. Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: A model-based study on how these hyphae grow. Biochem Eng J 114: 173-182 https://doi.org/10.1016/j.bej.2016.07.005
  46. Vagadia BH, Vanga SK, Raghavan V. 2017. Inactivation methods of soybean trypsin inhibitor: A review. Trends Food Sci Technol 64:115-125 https://doi.org/10.1016/j.tifs.2017.02.003
  47. Vaidehi MP, Annapurna ML, Vishwanath NR. 1985. Nutritional and sensory evaluation of tempeh products made with soybean, ground-nut, and sunflower-seed combinations. Food Nutr Bull 7:1-4 https://doi.org/10.1177/156482658500700118
  48. Van Etten CH, Kwolek WF, Peters JE, Barclay AS. 1967. Plant seeds as protein sources of food or feed. Evaluation based on amino acid composition of 379 species. J Agric Food Chem 15:1077-1089 https://doi.org/10.1021/jf60154a012
  49. Varzakas T. 1998. Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741-747 https://doi.org/10.1016/S0032-9592(98)00044-2
  50. Vong WC, Hua XY, Liu SQ. 2018. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT 90:316-322 https://doi.org/10.1016/j.lwt.2017.12.050
  51. Wallace GM, Bannatyne WR, Khaleque A. 1971. Studies on the processing and properties of soymilk: II.-Effect of processing conditions on the trypsin inhibitor activity and the digestibility in vitro of proteins in various soymilk preparations. J Sci Food Agric 22:526-531 https://doi.org/10.1002/jsfa.2740221008
  52. Yang JH, Mau JL, Ko PT, Huang LC. 2000. Antioxidant properties of fermented soybean broth. Food Chem71:249-254 https://doi.org/10.1016/S0308-8146(00)00165-5