• Title/Summary/Keyword: feedback controls

Search Result 171, Processing Time 0.028 seconds

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Performance Evaluation of Seismic Vibration Control of Asymmetrical Cable-Stayed Bridge Using MR Damper (MR 댐퍼를 이용한 비대칭 사장교의 지진 진동제어 성능평가)

  • Heo, Gwanghee;Kim, Chunggil;Gong, Yeong I
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.729-737
    • /
    • 2014
  • A study has been carried out that effectively controls the vibration of asymmetric cable-stayed bridges caused by earthquakes with MR dampers. In order to enhance the practical serviceability of MR dampers, an asymmetric cable-stayed bridge structure has been designed and produced, and a MR damper has been produced so as to have this bridge structure controlled appropriately. An experiment that controls vertical and horizontal vibrations has been carried out by exciting the asymmetric cable-stayed bridge in the horizontal direction with the El-centro seismic wave. The control performance of the MR damper has been evaluated under the five control conditions in the experiments of vibration control in each direction. As a result of the experiment, MR dampers were proved to control vibrations more effectively when either Lyapunov control algorithm or Clipped-optimal control algorithm was used to control vibrations of the asymmetric cable-stayed bridge caused by earthquakes. In addition, different controlling effects were found in vibration controls in vertical and horizontal directions due to the asymmetry of the structure and the horizontal excitation. With such controlling effects, semi-active MR dampers are evaluated to effectively control vibrations caused by earthquakes in flexible and asymmetric structures such as asymmetric cable-stayed bridges.

A Modified Microstep Drive of PM Step Motor (PM 스텝 모터의 개선된 마이크로 스텝 구동)

  • Lee, Tae-Gyoo;Shin, Ki-Sang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.15-17
    • /
    • 1996
  • In this paper, a modified microstep drive of PM step motor is presented. The open-loop drive of a step motor is attractive and widely accepted in applications of speed and position controls. However, the performance of the step motor is limited under the open-loop drive. The closed-loop control is advantages over the open-loop control not only in that step failure never occurs but that the motion is much quicker and smoother. However, a high resolution sensor is needed for detecting position and speed. The modified microstep drive is constructed as a microstep drive with speed feedback. The advantages of the proposed method is that the controller can be designed by a low resolution sensor and is simpler than other closed-loop controller. A concept of vector control is used for verifying the proposed scheme. Simulations show the performance of the proposed method and a comparison with a classic drive method.

  • PDF

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

State Estimation and Control in a Network for Vehicle Platooning Control (차량 군집주행을 위한 제어 네트워크의 변수 추정 및 제어)

  • Choi, Jae-Weon;Fang, Tae-Hyun;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.659-665
    • /
    • 2000
  • In this paper a platoon merging control system is considered as a remotely located system with state represented by a stochastic process. in the system it is common to encounter situations where a single decision maker controls a large number of subsystems and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike a classical estimation problem where the observation is a continuous process corrupted by additive noise there is a constraint that the observation must be coded and transmitted over a digital communication channel with fintie capacity. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. in this paper we introduce a stochastic model for the lead vehicle in a platoon of vehicles in a lane considering the angle between the road surface and a horizontal plane as a stochastic process. In order to merge two platoons the lead vehicle of the following platoon is controlled by a remote control station. Using the observation transmitted over communication channel the remote control station designs the feedback controller. The simulation results show that the intervehicle spacings and the deviations from the desired intervehicle spacing are well regulated.

  • PDF

Adaptive FEC and Rate Adaptation for High-speed Transport (고속 전송을 위한 적응형 FEC 및 전송률 제어)

  • Chang Hye young;Kim Jong won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3B
    • /
    • pp.85-94
    • /
    • 2005
  • In this paper, we propose a reliable high-speed UDP-based media transport with an adaptive error control. The proposed adaptive transport scheme controls the amount of redundancy by monitoring the network in order to adapt to network fluctuations efficiently. The feedback of receiver enables the sender to be aware of current reception status (i.e., rate and type of packet loss) and to estimate the expected network status. Based on this, the proposed transport attempts to enable reliable transport by adaptively controlling the amount of both whole sending rate and the ratio for adaptive FEC code. Experiment with high-speed network has been conducted to verify the performance of the proposed system that demonstrates the enhanced reliability of the proposed transport at the speed of up to several hundred Mbps.

User Interface in Web Based Communication for Internet Robot Control

  • Sugisaka, Masanori;Hazry, Desa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.49-51
    • /
    • 2005
  • Robot control involves advance programming, scientific and high technology. The systematic and methodological aspects of robot controls often results in having superficial control design problems that can negatively affect the robot application, usability and appeal. User friendly interface of robot control is extremely advantageous and more attractive. To illustrate, the application of medical robot is usually handled by clients who have little background in advance programming language. Thus, it would be difficult if the client needs to use programming language to control the robot. It would justify better if the robot control is presented in a meaningful interface to the client. This way the robot application would be more natural and user friendly. This paper describes the method of developing the user interface for web based communication to control an internet robot named Tarou. The web based communication tasks involves three levels. The first one accommodates on the client sending commands to robot through the internet. The next communication level relates to the robot receiving the commands sent by the client. The final communication level generates on sending feedback on status of commands by the robot to the client. The methodology used here can be elaborated in four hierarchical steps; identify user needs and robot tasks, identify the enhancing tag reference used by the server, induce the tag into HTML, present the HTML in attractive user interface as the client control panel.

  • PDF

Precision Position Control of Feed Drives (이송기구의 정밀 위치제어)

  • 송우근;최우천;조동우;이응석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.266-272
    • /
    • 1994
  • An essential ingredient in precision machining is a positioning system that responds quickly and precisely to very small input signal. In this paper, two different positioning systems were presented fot the precision positioning control. The one is a friction drive system, the other is a ballscrew system. The friction drive system was composed of an air sliding guide and a friction drive. The ballscrew system was made of a ballscrew and a linear guide. Nonlinear behaviors of the given systems tend to make the system inaccurate. The paper looked at the phenomena that has caused the positioning error. These apparently nonlinear phenomena can be attributed mainly to the presence of the nonlinear friction and slip effect plus the dynamic change from the microdynamic to the macrodynamic and form the macrodynamic to the microdynamic. For the control of the positioning system, the control algorithm based on a neural network is suggested. The FEL(Feedback Error Learning) controller can learn the inverse dynamics of a nonlinear system by using the neural network controller, and stabilize the system by a linear controller. In the experiment, PTP control is implemented withen the maximum error of 0.05 .mu.m ~0.1 .mu. m when i .mu.m step reference input is applied and that of maximum 1 .mu. m when 100 .mu.m step reference input is given. Sinusoidal inputs with the amplitude of 1 .mu.m and 100 .mu. m are used for the tracking control of the positioning system. Experimental results of the proposed algorithm are shown to be superior to those of conventional PD controls.

  • PDF

c-myc Expression: Keep the Noise Down!

  • Chung, Hye-Jung;Levens, David
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2005
  • The c-myc proto-oncogene encodes a nuclear protein that is deregulated and/or mutated in most human cancers. Acting primarily as an activator and sometimes as a repressor, MYC protein controls the synthesis of up to 10-15% of genes. The key MYC targets contributing to oncogenesis are incompletely enumerated and it is not known whether pathology arises from the expression of physiologic targets at abnormal levels or from the pathologic response of new target genes that are not normally regulated by MYC. Regardless of which, available evidence indicates that the level of MYC expression is an important determinant of MYC biology. The c-myc promoter has architectural and functional features that contribute to uniform expression and help to prevent or mitigate conditions that might otherwise create noisy expression. Those features include the use of an expanded proximal promoter, the averaging of input from dozens of transcription factors, and real-time feedback using the supercoil-deformable Far UpStream Element (FUSE) as physical sensor of ongoing transcriptional activity, and the FUSE binding protein (FBP) as well as the FBP interacting repressor (FIR) as effectors to enforce normal transcription from the c-myc promoter.

Adaptive Variable Structure Control of Container Cranes with Unknown Payload and Friction (미지의 부하와 마찰을 갖는 컨테이너 크레인의 적응 가변구조제어)

  • Baek, Woon-Bo;Lim, Joong-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1008-1013
    • /
    • 2014
  • This paper introduces an adaptive anti-sway tracking control algorithm for container cranes with unknown payloads and friction between the trolley and the rail. If the friction effects in the system can be modeled, there is an improved potential to design controllers that can cancel these effects. The proposed control improves the sway suppressing and the positioning capabilities of the trolley and hoisting against uncertain payload and friction. The variable structure controls are first designed based on a class of feedback linearization methods for the stabilization of the under-actuated sway dynamics. The adaptation mechanism are then designed with parameter estimation of unknown payload and friction compensation for the trolley and hoisting, based on Lyapunov stability methods for the accurate positioning and fast attenuation of trolley oscillation due to frictions in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulations are shown under various frictions and external winds in the case of no priori information of payload mass.