• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.025 seconds

Control of a Heavy Load Pointing System Using Neural Networks (신경회로망을 이용한 대부하 표적지향 시스템 제어)

  • 김병운;강이석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2004
  • This paper presents neural network based controller using the feedback error loaming technique for a heavy load pointing system. Also the mathematical model was developed to analyze heavy load pointing system. The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. The proposed controller is compared with the conventional PI controller through simulations, and the results show that the pointing accuracy of the proposed control system are improved against the disturbance induced by vehicle running on the bump course.

The Characteristics of Control Scheme and Inner Feedback Control with HC of Current-Controlled PWM Inverter (전류제어 PWM인버터의 HC에 대한 제어방식과 내부 피이드백제어의 특성)

  • 정동화;배진호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1031-1041
    • /
    • 1992
  • Existing current-controlled inverters with hysteresis controller (HC) result in the dependence of the inverter on its load characteristics, poor inverter utilization due to too much or too little supply voltage, and the current error in the hysteresis band(HB) which causes deterioration of operation of the supplied motor. In this paper, techniques and results of modeling the operation of current-controlled three phase power inverter with HC are presented. Four symmetrical control schemes are considered: the so called three independent control, three semi-dependent control(a), three semi-dependent control(b) and three dependent control each using three current controller. The dependence of the inverter on its load has been studied. To overcome this difficulty, an inner feedback control has been introduced and optimum parameter has been determined. With the addition of an inner feedback control, adjustment of the switching frequency to a desired value is possible. Also, this modification improves operating characteristics of inverter by enforcing a switching pattern of low dependence on the load, resulting in significantly improved quality of the output current.

  • PDF

Design of H Repetitive Control Systems using State Feedback (상태 궤환을 이용한 H 반복 제어 시스템 설계)

  • Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • Repetitive control is a specialized control scheme to track and/or attenuate a periodic reference trajectory and/or disturbance. Most researches about repetitive control have been performed in the frequency domain. Recently, several approaches to deal with repetitive control systems in the state space are developed by representing a q filter as a state-space equation. This paper presents a design method of a repetitive control system in the state space to satisfy $H_{\infty}$ performance. The overall system is composed of a plant, a repetitive controller, and a state-feedback controller, which can be converted to a standard form used in $H_{\infty}$ control. A LMI (Linear Matrix Inequality)-based stability condition is derived for fixed state-feedback gains. Under a given q filter, another LMI condition is derived to improve $H_{\infty}$ performance and is employed to find state-feedback gains by solving an optimization problem. Finally, to verify the feasibility of the proposed method, a numerical example is demonstrated.

Nonlinear system control by use of neural networks

  • Zhang, Ping;Sankai, Yoshiyuki;Ohta, Michio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.411-415
    • /
    • 1994
  • An adaptive learning control scheme by use of multilayer neural networks for compensating for uncertainties in nonlinear dynamic system is examined. Multilayer neural networks are introduced to map the uncertainties in nonlinear dynamics and perform nonlinear state feedback. Parameters of neural networks are adjusted by conventional back-propagation algorithms modified with the projection operation. Effectiveness of the proposed scheme for tracking control are demonstrated through computer simulations.

  • PDF

Robust Adaptive Controller Free from Input Singularity for Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Yoong, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.4-95
    • /
    • 2001
  • In this paper, we proposed and analyze an robust adaptive control scheme for uncertain nonlinear systems using Universal function approximators. The proposed scheme completely overcomes the singularity problem which occurs in the indirect adaptive feedback linearizing control. No projection in the estimated parameters and no switching in the control input are needed. The stability of the closed-loop systems is guaranteed in the Lyapunov standpoint.

  • PDF

Vibration reduction for interaction response of a maglev vehicle running on guideway girders

  • Wang, Y.J.;Yau, J.D.;Shi, J.;Urushadze, S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • As a vehicle moves on multiple equal-span beams at constant speed, the running vehicle would be subjected to repetitive excitations from the beam vibrations under it. Once the exciting frequency caused by the vibrating beams coincides with any of the vehicle's frequencies, resonance would take place on the vehicle. A similar resonance phenomenon occurs on a beam subject to sequential moving loads with identical axle-intervals. To reduce both resonant phenomena of a vehicle moving on guideway girders, this study proposed an additional feedback controller based the condensed virtual dynamic absorber (C-VDA) scheme. This condensation scheme has the following advantages: (1) the feedback tuning gains required to adapt the control currents or voltages are directly obtained from the tuning forces of the VDA; (2) the condensed VDA scheme does not need additional DoFs of the absorber to control the vibration of the maglev-vehicle/guideway system. By decomposing the maglev vehicle-guideway coupling system into two sub-systems (the moving vehicle and the supporting girders), an incremental-iterative procedure associated with the Newmark method is presented to solve the two sets of sub-system equations. From the present studies, the proposed C-VDA scheme is a feasible approach to suppress the interaction response for a maglev vehicle in resonance moving on a series of guideway girders.

Diode Stresses Reduction Of Asymmetrical Half-Bridge Converter Using Hybrid Control Scheme (하이브리드 제어기법을 이용한 Asymmetrical 하프 브리지 컨버터의 다이오드 스트레스 저감기법)

  • Joh, Chahng-Gyu;Lee, Dong-Yun;Kim, Kyong-Hwan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.221-223
    • /
    • 2003
  • This paper presents a new hybrid control method of asymmetrical/symmetrical half-bridge converter (AHBC/SHBC) with low voltage stress of the diodes. The proposed new control scheme is executed by using feedback of the input voltage and then can decide operation of the converter is divided into two ranges, which are asymmetrical control and symmetrical control, So the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, and low conduction loss according to the low voltage drop. The proposed control scheme is verified by simulated results.

  • PDF

Predictive Control of Bilateral Teleoperation with Short Time Delay (시간 지연이 있는 양방향 원격제어 시스템의 예측 제어)

  • Im, Heung-Jae;Chung, Wan-Kyun;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • In the teleoperation system, force and velocity signals are communicated between a master and a slave robot. The addition of force feedback to a teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The control scheme proposed in this paper is based on the estimator with virtual master model. Delayed signal from the master robot can be replaced by the estimated signal with the virtual master model. This control scheme makes the teleoperation system stable for the given time delay while the conventional scheme is not. This new control scheme is verified through numerical simulations and an experiments using the dual axis testbed of the teleoperation system.

  • PDF

Adaptive Optimal Output Feedback Control (적응 최적 출력 제어)

  • 신현철;변증남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.31-37
    • /
    • 1982
  • A practical and robust control scheme is suggested for MIMO disciete time processes with real simple poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, maybe successfully applicable to structured dynamic controllers for plants whose paiameters are slowly timevaiying. The identiflcation of the process paiameters is undertaken in ARMA form and the optimization of the feedback gain matrix is performed in the state space representation with respect to a standard quadratic criterion.

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.