• 제목/요약/키워드: feed processing

검색결과 513건 처리시간 0.03초

비육용 곡물사료의 가공방법과 증체효율 (Grain Processing on Feed Efficiency for Beef Production)

  • 김영길
    • 생명과학회지
    • /
    • 제5권3호
    • /
    • pp.126-136
    • /
    • 1995
  • The studies had been conducted to evaluate the grain processing effects for ruminants on starch digestion, body weight gain and feed efficiency since 1970. This research deals with experimental results on chemical structure, gelatinization, microbial starch digestion in rumen, intestinal starch digestion in rumen, roles of protozoa, intestinal starch digestion of bypass starch, limits to starch digestion in small intestine. The grain processing has different effects on digestion, weight gain and feed efficiency when different grain sources and contents is used, and the quality and quantity of roughage is different. The economical and efficient method of grain processing should be selected considering weight gain and feed efficiency enhancement than digestibility.

  • PDF

Crumbled or mashed feed had no significant effect on the performance of lactating sows or their offspring

  • Kim, S.C.;Li, H.L.;Park, J.H.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • 제57권12호
    • /
    • pp.45.1-45.5
    • /
    • 2015
  • Background: Physical and chemical properties of feedstuffs can be changed by feed processing. Moreover, through various mechanisms, feed processing can affect growth performance and feed efficiency of swine, nutrition value of the feed. Weaning-to service-intervals (WSI), subsequent farrowing rates, and total-born litter sizes were determined by feed intake and metabolic state during lactation. Methods: A total of 20 sows (Landrace ${\times}$ Yorkshire) with an average body weight (BW) of 266.1 kg 4 d before farrowing were used to determine the effect of feed processing on the performance of lactating sows and their offspring. The following two dietary treatments were used: 1) Crumble diet (C); and 2) Mash diet (M). Ten replications were used for each treatment. Back fat thickness of sows was measured 6 cm off the midline at the 10th rib using a real-time ultrasound instrument at 4 d before farrowing, 1 d after farrowing, and during weaning. Sow BW were also checked at 4 d before farrowing, 1 d after farrowing, and during weaning. Fecal score of sows were assessed on d 14. Fecal score of piglets were observed on d 7, 15, and 24. Data were analyzed using t-test procedure of SAS (2014) with sow as experimental unit. Results: No significant (p > 0.05) difference was observed in the reproduction performance of sows between the two treatments. In addition, there was no significant (p > 0.05) difference in the growth performance of piglets between the two treatments. Fecal score of sows or piglets showed no significant (p > 0.05) difference either. Conclusions: In conclusion, different feed processing (mash or crumble) did not make any significant difference on the performance of lactation sow or their piglets.

Evaluation of the effects of seasonal raw materials and processing stages in feed mills implementing the HACCP system on mycotoxin content in feed

  • Baek, Seung Hee;Nam, Insik
    • 대한수의학회지
    • /
    • 제61권1호
    • /
    • pp.7.1-7.7
    • /
    • 2021
  • The levels of aflatoxin (AFT) and ochratoxin (OCT) were assessed at different seasons in raw materials, different feed manufacture processing stages, and animal feeds in feed mills in Korea implementing the hazard analysis and critical control point (HACCP) system. Two hundred samples were collected in all four seasons from five feed mills implementing the HACCP system and examined for AFT and OCT contents. The AFT and OCT levels were analysed by using HPLC method to provide information on raw material and product stage. The AFT content of raw ingredients in the spring season was highest in corn gluten (3.84 ppb) and lowest in corn (1.82 ppb) The AFT content of corn was highest in the winter season (2.17 ppb). The content of OCT in wheat was highest in the winter season. The amounts of AFT and OCT at processing stages were higher than in the raw materials or feed. In particular, AFT content was higher in the transfer stage (3.88 ppb) than in the mixing (2.86 ppb) or filling stages (3.45 ppb) in the summer season. The means of AFT and OCT level in laying hen feed was 3.41 ppb and 1.14 ppb for broiler feed, respectively. The means of AFT and OCT level in and broiler feeds was 3.44 ppb and 1.17 ppb for broiler feed, respectively.

아날로그 PRML 디코더를 위한 아날로그 병렬처리 회로의 전향 차동 구조 (Feed forward Differential Architecture of Analog Parallel Processing Circuits for Analog PRML Decoder)

  • 마헤스워 샤퍄라;양창주;김형석
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1489-1496
    • /
    • 2010
  • A feed forward differential architecture of analog PRML decoder is investigated to implement on analog parallel processing circuits. The conventional PRML decoder performs the trellis processing with the implementation of single stage in digital and its repeated use. The analog parallel processing-based PRML comes from the idea that the decoding of PRML is done mainly with the information of the first several number of stages. Shortening the trellis processing stages but implementing it with analog parallel circuits, several benefits including higher speed, no memory requirement and no A/D converter requirement are obtained. Most of the conventional analog parallel processing-based PRML decoders are differential architecture with the feedback of the previous decoded data. The architecture used in this paper is without feedback, where error metric accumulation is allowed to start from all the states of the decoding stage, which enables to be decoded without feedback. The circuit of the proposed architecture is simpler than that of the conventional analog parallel processing structure with the similar decoding performance. Characteristics of the feed forward differential architecture are investigated through various simulation studies.

How to develop strategies to use insects as animal feed: digestibility, functionality, safety, and regulation

  • Jae-Hoon, Lee;Tae-Kyung, Kim;Ji Yoon, Cha;Hae Won, Jang;Hae In, Yong;Yun-Sang, Choi
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.409-431
    • /
    • 2022
  • Various insects have emerged as novel feed resources due to their economical, eco-friendly, and nutritive characteristics. Fish, poultry, and pigs are livestock that can feed on insects. The digestibility of insect-containing meals were presented by the species, life stage, nutritional component, and processing methods. Several studies have shown a reduced apparent digestibility coefficient (ADC) when insects were supplied as a replacement for commercial meals related to chitin. Although the expression of chitinase mRNA was present in several livestock, indigestible components in insects, such as chitin or fiber, could be a reason for the reduced ADC. However, various components can positively affect livestock health. Although the bio-functional properties of these components have been verified in vitro, they show positive health-promoting effects owing to their functional expression when directly applied to animal diets. Changes in the intestinal microbiota of animals, enhancement of immunity, and enhancement of antibacterial activity were confirmed as positive effects that can be obtained through insect diets. However, there are some issues with the safety of insects as feed. To increase the utility of insects as feed, microbial hazards, chemical hazards, and allergens should be regulated. The European Union, North America, East Asia, Australia, and Nigeria have established regulations regarding insect feed, which could enhance the utility of insects as novel feed resources for the future.

가금의 살모넬라 제어를 위한 사료의 이화학적 처리와 사료첨가제의 활용 (Physiochemical Treatment of Feed and Utilization of Feed Additives to Control Salmonella in Poultry)

  • 김지혁;김학연;김봉기;김계웅
    • 한국가금학회지
    • /
    • 제45권1호
    • /
    • pp.1-15
    • /
    • 2018
  • Salmonella infections in livestock industry cause various problems such as worsening animal welfare and productivity, damaging consumer confidence in the food safety of animal products. Chicken meat and eggs are known as major source of pathogen causing human foodborne infections. Therefore food safety concerns have prompted the poultry producers and governments to introduce the strategy and regulation to control these pathogens. Salmonella can persist for long periods of time in a wide range of spaces including feed bin, feed processing facilities, poultry farm, slaughterhouse, processing plants, etc. For the effective and constant Salmonella control, combination of pre-harvest, harvest and post-harvest measures should be considered comprehensively. The control measures would be most effective at farm level where the contamination initiates. Transmission of pathogen from feed origin to the live poultry and finally to the products was proven already. To control bacteria in the feed ingredients and formula feed, thermal processing, irradiation or chemical treatment may be applied. Chemical treatments to inhibit Salmonella in the feed involve the use of products containing organic acids, formaldehyde, or a combination of such compounds. However, recontamination which might occur during storage and transport process and/or by other various factors should always be under control and eliminated. Feed additives used to control Salmonella in birds' gastrointestinal track can be of various types, including prebiotics, probiotics, organic acids and bacteriophages. Although their mode of action varies, they ultimately inhibit the colonization of Salmonella in the gut and improve the performance of birds. This review describes the strategies that could be adapted to the management of feedstuffs and the use of feed additives in pre-harvest stage to control Salmonella contamination in poultry farming.

반추가축에 있어서 옥수수 알곡의 가공이 영양소 이용에 미치는 영향에 관한 고찰 (Review : Effects of Corn Processing on Nutrient Utilization in Ruminants)

  • 김완영;김홍욱;이기종
    • 현장농수산연구지
    • /
    • 제3권1호
    • /
    • pp.102-115
    • /
    • 2001
  • Through out the last few decades, processing methods for ingredients of feed grains, such as grinding, flaking, extrusion, soaking, cracking etc., have been adopted in order to improve the nutrient digestibility in ruminants. Among feed grains, processing methods for whole corns have been the most frequently studied since corns are utilized as the thumb ingredients in formulating feeds. In these days, flaking of whole corns is the most incessantly used in formulation feeds, resulting in enhancing the performance of ruminants. Recently formulating non-forage feed for beef cattle, especially Holsteins, without processing whole corns is carrying out through various feed companies with expectations of whole corns acting like forages. However, it can not be ruled out that whole corns might possibly result in decreasing the productivity due to the depression of nutrient utilizations. Therefore, one must reevaluate the non-forage feeds as well as makes an effort to develop the rational and effective methodology in processing whole corns with the consideration of rumen eco-system.

수직형 소형정미기의 벼 도정 특성 -주축회전수, 롤러의 세라믹코팅길이, 이송스크루 피치의 최적 설계조건에 대하여- (Milling Characteristics of Vertical Small Scale Milling Machine for the Rough Rice -Optimum design conditions of main spindle speed, ceramic coating length of roller and feed screw pitch-)

  • 연광석;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.177-188
    • /
    • 2001
  • This research was carried out to examine the optimum design conditions of a vertical small-scale milling machine where the rough rice is processed directly into the white rice in one pass. Effects of the main spindle speed, feed screw pitch and ceramic coating length of the roller on various milling characteristics such as white rice processing capacity, electric energy consumption, rice temperature increase, broken rice ratio, moisture reduction, outlet force and crack ratio increase were studied. The results are as follows. 1. The maximum white rice processing capacity and the lowest crack ratio increase, were obtained from a machine with specification: main spindle speed of 970rpm having a feed screw pitch of 19㎜. 2. The minimum electric energy consumption was obtained with the main spindle speeds of 900 and 970rpm respectively having a feed screw pitch of 19㎜. 3. The rice temperature was increased as the feed screw pitch decreased and the main spindle speed increased. 4. Broken rice ratio was relatively low with the range of 0.8∼1.3%. 5. Moisture content loss was with the range of 0.05∼0.4%. 6. The highest outlet force was 0.72kg$\_$f/ with 900rpm of the main spindle speed and 19㎜ of the feed screw pitch and the lowest outlet force was 0.18∼0.34kg$\_$f/ with 970rpm of the main spindle speed and 16㎜ of the feed screw pitch. 7. The optimum design conditions for the vertical small-scale milling machine were obtained at 970rpm of the main spindle speed, 19㎜ of the feed screw pitch and 20㎜ of the ceramics coating length.

  • PDF