• Title/Summary/Keyword: federated Kalman filter

Search Result 14, Processing Time 0.025 seconds

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

Maneuvering-Target Tracking Using the Federated Kalman Filter with Multiple Sensors (연합형 칼만필터를 이용한 다중감지기 환경에서의 기동표적 추적)

  • 황보승욱;홍금식;최성린
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.598-601
    • /
    • 1995
  • This paper proposes a federated Kalman filter approach which utilizes information from multiple sensors and variable estimation model. Compared with the decentralized Kalman filter, the algorithm proposed in this paper demonstrates much better tracking performance in both maneuvering and constant velocity movement of the target.

  • PDF

Attitude Estimation for Satellite Fault Tolerant System Using Federated Unscented Kalman Filter

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2010
  • We propose a spacecraft attitude estimation algorithm using a federated unscented Kalman filter. For nonlinear spacecraft systems, the unscented Kalman filter provides better performance than the extended Kalman filter. Also, the decentralized scheme in the federated configuration makes a robust system because a sensor fault can be easily detected and isolated by the fault detection and isolation algorithm through a sensitivity factor. Using the proposed algorithm, the spacecraft can continuously perform a given mission despite navigation sensor faults. Numerical simulation is performed to verify the performance of the proposed attitude estimation algorithm.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

Design of a vehicle navigation system using the federated kalman filter (연합형 칼만 필터를 이용한 차량항법시스템의 설계)

  • 김진원;지규인;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1348-1351
    • /
    • 1997
  • The federated Kaman filter(FKF) is being widely used in many multisensor navigatiion systems. It is know that the FKF has advantages of simplicity and fault-tolerance over other decentralized filter techniques. In this paper, optimal and suboptimal FKF configuratiions are mentioned and a covariance analysis technique for the suboptimal FKF is newly presented. The suboptimal FKF configuration, known as No-reset(NR) mode, has better fault tolerance capability than the optimal FKF coniguratioin. In the suggested technique, a suboptimal fusion process of FKF is considered a swell as suboptimal gains of local filters. An upper boun of error covariance for suboptimal FKF is derived. Also, it is mathematically shown that this bound is smaller thanexisting bound in the literatrue. A vehicle-navigaion system is designed using the FKF. In thissystem, a map constraing equation is introduced and used as a measurement equatioin of Kalman filter. Performance analysis is done by the suggested covariance analysis techniques.

  • PDF

A Tracking Algorithm for Autonomous Navigation of AGVs: Federated Information Filter

  • Kim, Yong-Shik;Hong, Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.635-640
    • /
    • 2004
  • In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.

Integration Algorithm of GPS/SDINS/ST for a Space Navigation (우주항법을 위한 GPS/SDINS/ST 결합 알고리듬)

  • Yi, Chang-Yong;Cho, Kyeum-Rae;Lee, Dae-Woo;Cho, Yun-Cheol
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A GPS/SDINS/ST(Star Tracker) integrated sensor algorithm is more robust than the GPS/SDINS and the ST/SDINS systems on exploration of other planets. Most of the advanced studies shown that GPS/SDINS/ST integrated sensor with centralized Kalman filter was more accurate than those 2 integrated systems. The system, however, consist of a single filter, it is vulnerable to defects on failed data. To improve the problem, we work out a study using federated Kalman filter(No-Reset mode) and centralized Kalman filter with adaptive measurement fusion which known as robustness on fault. The simulation results show that the debasing influences are reduced and the computation is enable at least 100Hz. Further researches that the initial calibration in accordance with observability and applying the exploration trajectory are needed.

Design of Multi-Sensor Data Fusion Filter for a Flight Test System (비행시험시스템용 다중센서 자료융합필터 설계)

  • Lee, Yong-Jae;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.414-419
    • /
    • 2006
  • This paper presents a design of a multi-sensor data fusion filter for a Flight Test System. The multi-sensor data consist of positional information of the target from radars and a telemetry system. The data fusion filter has a structure of a federated Kalman filter and is based on the Singer dynamic target model. It consists of dedicated local filter for each sensor, generally operating in parallel, plus a master fusion filter. A fault detection and correction algorithms are included in the local filter for treating bad measurements and sensor faults. The data fusion is carried out in the fusion filter by using maximum likelihood estimation algorithm. The performance of the designed fusion filter is verified by using both simulation data and real data.

Federated Variable Dimension Kalman Filters with Input Estimation for Maneuvering Target Tracking (기동하는 표적의 추적을 위한 연합형 가변차원 입력추정필터)

  • Hwang-bo, Seong-Wook;Hong, Keum-Shik;Choi, Sung-Lin;Choi, Jae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.764-776
    • /
    • 1999
  • In this paper, a tracking algorithm for a maneuvering single target in the presence of multiple data from multiple sensors is investigated. Allowing individual sensors to function by themselves, the estimates from individual sensors on the same target are fused for the purpose of improving the state estimate. The filtering method adopted in the local sensors is the variable dimensional filter with input estimatio technique, which consists of a constant velocity model and a constant acceleration model. A posteriori probability for the maneuvering hypothesis is newly derived. It is shown that the relation function of the a posteriori probability is a function of only the covariance of the fused estimates. Simulation results are provided.

  • PDF