• Title/Summary/Keyword: fed-batch growth

Search Result 177, Processing Time 0.02 seconds

Xylitol의 생산성 향상을 위한 Two-stage Fed-batch 배양조건의 최적화

  • Jo, Yeong-Il;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.356-359
    • /
    • 2000
  • A two-stage fed-batch fermentation was carried out to increase xylitol productivity by Candida tropicalis. The first stage for cell growth was performed in the pH-stat and continuous fed-batch modes. The higher cell growth and lower ethanol production obtained in the fed-batch mode where the growth medium was fed when pH of culture broth increased over 5.7. And also the effect of oxygen transfer on xylitol production was investigated by changing agitation speed under 0.5 vvm of aeration. The maximum xylitol productivity and yield were obtained at 500 rpm of agitation.

  • PDF

Development of an Immobilized Adsorbent for In Situ Removal of Ammonium Ion from Animal Cell Culture Media and Its Applications to Animal Cell Culture System : II. Application to Cell Culture System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용 : II. 세포배양 시스템에의 응용)

  • 박병곤;이해익;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The possibility of application of membrane type immobilized adsorbent to the fed-batch or perfusion culture system with anchorage-independent cells as well as batch system was investigated. The improvement in cell density and cell viability due to the combination of immobilized adsorbent with each culture system was evaluated for the investigation, and the optimum culture system employing immobilized adsorbent system was suggested based on the results. It was observed that the system with immobilized adsorbent showed better cell growth and cell viability than that without immobilized adsorbent in every operation system of batch, fed-batch, and perfusion. In case of batch system, 200% improvement of maximum cell density was observed in the system where ammonium chloride was added on purpose. And 50% improvement of maximum cell density was observed in the fed-batch system where ammonium ion accumulates significantly, while small increase in maximum cell density was observed in the perfusion system where dilution of waste byproducts exists. Especially, the fed-batch system showed the most significant improvement on cell growth because both compensation of nutrient and removal of ammonium ion occurred simultaneously in the system. Therefore a combined system of immobilized adsorbent and fed-batch operation could be suggested as an optimum system with in situ removal of ammonium ion.

  • PDF

Exopolysaccharide Production in Fed-batch and Continuous Culture by Methylomonas mucosa (Methylomonas mnosa에 의한 Exopolysaccharide의 유가식 및 연속 생산)

  • 장호남;권선훈심상준
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.164-171
    • /
    • 1993
  • The production of extracellular polysaccharide by Methylomonas mucosa (NRRL B-5696) was investigated. The microorganism uses methanol as the carbon source for their growth and produces exopolysaccharides. The productivity of exopolysaccharides was investigated under various culture modes: batch, fed-batch and continuous culture. In flask culture the growth of cell mass and the production of polysaccharide were inhibited at above 1% (v/v) methanol. At 1%(v/v) methanol maximum specific growth rate was obtained. As C/N ratio (g methanol/g ammonium sulfate) increased, polysaccharide production increased and cells mass decreased. Magnesium ion was also found to be essential for the polysaccharide production. In batch culture the production of polysaccharides was more affected by the specific growth rate than the cell concentration. In fed-batch culture the concentration of polysaccharide was 4 times higher than that of batch culture, but the yield was lower. The productivity of fed-batch with continuous feeding was higher than that of batch or fed-batch with intermittent feeding. This is due to no methanol limitation or inhibition that used to occur in fed-batch culture with intermittent feeding. In continuous culture pure oxygen was supplied to avoid the oxygen limitation. As the dilution rate in- creased up to 0.21 h-1, the yield and productivity increased. The solution viscosity of the produced polysaccharide obtained from above increased exponentially with the concentration of polysaccharide.

  • PDF

Growth of Issatchenkia orientalis in Aerobic Batch and Fed-batch Cultures

  • Shin, Hyung-Tai;Lim, Yoo-Beom;Koh, Jong-Ho;Kim, Jong-Yun;Baig, Soon-Yong;Lee, Jae-Heung
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.82-85
    • /
    • 2002
  • The aerobic batch growth of Issatchenkia orientalis DY252 with glucose and fructose medium was investigated at 32$\^{C}$ and pH 5.0. Aerobic ethanol production was evident with yeast I, orientalis. A diauxic lag of about 1 h between growth on glucose and growth on ethanol during batch culture was observed. However, no diauxic growth occurred with fructose. As the incubation temperature was increased from 32 to 39$\^{C}$, viability at the end of each batch culture declined significantly, from 93 to 43%, Unlike the effect of temperature, viability was not greatly affected by incubation pH, and cell yield values in a range of 0.45-0.48 were obtained. In order to overcome overflow metabolism, a fedbatch culture under glucose limitation was carried out. Compared with aerobic batch culture, about 10% improvement in cell yield was achieved with a fed-batch culture in optimal conditions.

Mathematical Modeling with Cell Morphology and Its Application to Fed-batch Culture in Cephalosporium Fermentation (Cephalosporium 발효시 균체의 형태학적 측면을 고려한 수학적 모델링 및 유가식 배양에의 응용)

  • 김의용;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.521-535
    • /
    • 1991
  • A kinetic model incorporating cell morphology in cephalosporin C biosynthesis by Cephalosporium amemoniurn was developed. The double-substrate Double-substrate kinetic model was used to describe cell growth. Methionine controlled the rate of growth while glucose ultimately controlled the extent of growth. The changes in specific product formation rate were associated with morphologenesis, especially cell differentiation. To increase the productivity of cephalosporin C, the proposed model equations were applied to a fed-batch culture. The algorithm to optimize the fed-batch culture consists of two steps; cell growth was maximized in the growth phase and then cephalosporin C production was maximized in the production phase. The increase of about 33% in the cephalosporin C titre was obtained by the optimal feeding scheduling in comparison with that of batch culture.

  • PDF

Production of Poly-$\beta$-hydroxybutyrate from Methanol by Fed-batch Cultivation of methylobacterium sp. GL-10 (Methylobacterium sp. GL-10의 유가식 배양에 의한 Methanol로 부터 Poly-$\beta$-hydroxybutyrate의 생산)

  • 이호재;이용현
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 1991
  • The production of poly-$\beta$-hydroxybutyrate(PHB) from methanol by batch and fed-batch cultivations of Methylobacterium sp. GL-10 was studied. PHB accumulation was stimulated by the nutrients deficiency including, NH4+, SO42-, and K+. The nitrogen deficiency was the most critical factor for PHB accumulation. In batch cultivation, the maximum cell concentration and PHB content were 1.86g/l and 0.62g/l, respectively, with 1.0%(v/v) of methanol and 0.5g/1 of ammonium sulfate. The mass doubling time of Methylobacterum sp. GL-10 was in the range of 4-5 hrs. The cell growth and PHB accumulation were severely inhibited at the methanol concentration over than 2% (v/v). To overcome methanol Inhibition, constant feeding and intermittent feedillg fed-batch cultivations were adopted, using C/N molar ratio as a control factor. In constant feeding fed-batch process, cell concentration was increased up to 2.67g/1, and PHB yield was enhanced from 0.33 of batch culture to 0.53. The relatively low cell concentration was caused by methanol accumulated in culture broth at late growth phase. To prevent methanol accumulation and to maximize PHB production, DO-state intermittent fed-batch cultivation was attempted. The cell and PHB concentration was reached up to 4.55g/1 and 1.80g/1, respectively. It was possible to maintain methanol concentration low and also to feed nutrient of desired C/N molar ratio.

  • PDF

Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments (Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF

Optimization of Producing Liquid Fuel from Photosynthetic Algal Growth

  • Pak, Jin-Hong;Lee, Shin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 1991
  • The green alga, Dunaliella salina under fed-batch cultivation produced 51.12 mg of hydrocarbon per liter with maintaining 0.313 (g dry wt/l). About 20% of hydrocarbon production yield based on dry biomass was obtained from both batch and fed-batch processes. Optimum culture conditions of light intensity, pH and salt concentration were obtained as 0.0080 (kJ/$cm^2$/h), 8.0 and 1.4 (g of NaCl/l), respectively by response surface analysis. The production of hydrocarbons in D. salina was closely correlated to cell growth. Fed-batch cultivation produced more hydrocarbons and maintained better cell growth than a batch process.

  • PDF

Maximization of cell growth and polysaccharide production from Agaricus blazei by fed-batch cultivation

  • Hwang, Jeong-Min;Seo, Jeong-Sik;Gwon, Myeong-Sang;Choe, Jeong-U;Han, Jin-Su;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.283-286
    • /
    • 2000
  • In order to maximize the cell growth and the polysaccharide production in Agaricus blazei, two kinds of fed-batch fermentation processes were performed with varying the feeding medium compositions and the feeding process. The relationship between dissolved oxygen and polysaccharide production in batch fermentation was applied to fed-batch fermentation. The biomasss concentration was 18.2 g/L and the polysaccharide production was 10.4 g/L.

  • PDF

A Study of Pseudomonas putida Fed-batch Culture (Pseudomonas putida의 유가배양연구)

  • 김인호;김희정;송재양
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.307-310
    • /
    • 2002
  • In order to obtain high density seed cells for biofiltration, we studied batch and fed-batch culture of P. putida. Studies were carried out to find optimum fermentation conditions such as pH, concentration of glucose and agitation speed. Specific growth rate of P. putida was dependent on agitation speed and a high rpm of 300 was necessary to carry out the efficient aerobic growth of P. putida. Specific growth rate was highest at pH 7. Feeding glucose and yeast extract continuously at the initial growth phase was the most effective way to get high cell density of P. putida.