• Title/Summary/Keyword: feature vector selection

Search Result 184, Processing Time 0.028 seconds

A Comprehensive Approach for Tamil Handwritten Character Recognition with Feature Selection and Ensemble Learning

  • Manoj K;Iyapparaja M
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1540-1561
    • /
    • 2024
  • This research proposes a novel approach for Tamil Handwritten Character Recognition (THCR) that combines feature selection and ensemble learning techniques. The Tamil script is complex and highly variable, requiring a robust and accurate recognition system. Feature selection is used to reduce dimensionality while preserving discriminative features, improving classification performance and reducing computational complexity. Several feature selection methods are compared, and individual classifiers (support vector machines, neural networks, and decision trees) are evaluated through extensive experiments. Ensemble learning techniques such as bagging, and boosting are employed to leverage the strengths of multiple classifiers and enhance recognition accuracy. The proposed approach is evaluated on the HP Labs Dataset, achieving an impressive 95.56% accuracy using an ensemble learning framework based on support vector machines. The dataset consists of 82,928 samples with 247 distinct classes, contributed by 500 participants from Tamil Nadu. It includes 40,000 characters with 500 user variations. The results surpass or rival existing methods, demonstrating the effectiveness of the approach. The research also offers insights for developing advanced recognition systems for other complex scripts. Future investigations could explore the integration of deep learning techniques and the extension of the proposed approach to other Indic scripts and languages, advancing the field of handwritten character recognition.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

Improving the Performance of a Fast Text Classifier with Document-side Feature Selection (문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

Specific Material Detection with Similar Colors using Feature Selection and Band Ratio in Hyperspectral Image (초분광 영상 특징선택과 밴드비 기법을 이용한 유사색상의 특이재질 검출기법)

  • Shim, Min-Sheob;Kim, Sungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1081-1088
    • /
    • 2013
  • Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

The Important Frequency Band Selection and Feature Vecotor Extraction System by an Evolutional Method

  • Yazama, Yuuki;Mitsukura, Yasue;Fukumi, Minoru;Akamatsu, Norio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2209-2212
    • /
    • 2003
  • In this paper, we propose the method to extract the important frequency bands from the EMG signal, and for generation of feature vector using the important frequency bands. The EMG signal is measured with 4 sensor and is recorded as 4 channel’s time series data. The same frequency bands from 4 channel’s frequency components are selected as the important frequency bands. The feature vector is calculated by the function formed using the combination of selected same important frequency bands. The EMG signals acquired from seven wrist motion type are recognized by changing into the feature vector formed. Then, the extraction and generation is performed by using the double combination of the genetic algorithm (GA) and the neural network (NN). Finally, in order to illustrate the effectiveness of the proposed method, computer simulations are done.

  • PDF

Discriminative Feature Vector Selection for Emotion Classification Based on Speech (음성신호기반의 감정분석을 위한 특징벡터 선택)

  • Choi, Ha-Na;Byun, Sung-Woo;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1363-1368
    • /
    • 2015
  • Recently, computer form were smaller than before because of computing technique's development and many wearable device are formed. So, computer's cognition of human emotion has importantly considered, thus researches on analyzing the state of emotion are increasing. Human voice includes many information of human emotion. This paper proposes a discriminative feature vector selection for emotion classification based on speech. For this, we extract some feature vectors like Pitch, MFCC, LPC, LPCC from voice signals are divided into four emotion parts on happy, normal, sad, angry and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification.