• Title/Summary/Keyword: feature space

Search Result 1,365, Processing Time 0.03 seconds

Planning and Evaluating Public House with Symbolic Representation Of Regional Feature (지역고유의 상징성을 표현한 공동주택 계획 및 평가 - 경북 김천시를 중심으로 -)

  • Park, Young-Mi;Choi, Jung-Min
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.11a
    • /
    • pp.385-390
    • /
    • 2008
  • The residence plan of Korea has been formed with bias for quantitative growth and uniformity failing at obtaining human value. Also, rapid growth brought about severe problems of deteriorated human life and destruction of environment. The solution for these problems is pursued in many directions, but there is short of active plan yet. The residence shall develop into new direction to satisfy the demand by reflecting society and culture as well as residents. This study examines external design with symbolic representation of regional feature as an alternative for uniform residence environment problem. This study will be a basic data upon suggesting the direction for planning high quality residence environment. This study examined the elements which form external space of residence complex, designed plan for external space of residence complex, and examined how to reflect regional feature which is important element of local community and culture on the space plan for residence complex based on the evaluation by local residents centered on Gimcheon-si, Gyeongbuk which just started local specialty by fostering. 'Special Area for Grape Industry.'

  • PDF

Navigable Space-Relation Model for Indoor Space Analysis (실내 공간 분석을 위한 보행 공간관계 모델)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.75-86
    • /
    • 2011
  • Three-dimensional modeling of cities in the real-world is an essential task for city planning and decision-making. And many three-dimensional city models are being developed with the development of wireless Internet and location-based services that identify the location of users and provide the information increases for consumers. Especially, in case of urban areas of Korea, indoor space modeling as well as outdoor is needed due to the high-rise buildings densities. Also location-based services should be provided through spatial analysis such as the shortest path based on a space model. Many studies of three-dimensional city models are feature models. In a feature model, space is represented by combining primitives, and relationships among spaces are represented only if shared primitives are detected. So relationships between complex three-dimensional objects in space is difficult to be defined through the feature models. In this study, Navigable space-relation model(NSRM) is developed, which is topological data model for efficient representation of spatial relationships between objects based on the network structure.

Comparing Korean Spam Document Classification Using Document Classification Algorithms (문서 분류 알고리즘을 이용한 한국어 스팸 문서 분류 성능 비교)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.222-225
    • /
    • 2006
  • 한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.

  • PDF

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.

On the Formative Feature Characteristics of Cyber Character's Fashion in the Cyber-space Game (가상공간 게임에 나타난 사이버 캐릭터 의상의 조형성)

  • 서정립;진경옥
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.3
    • /
    • pp.99-112
    • /
    • 2004
  • The purpose of this research is to examine the relation between the cyber environment and the contemporary fashion design by studying the formative feature characteristics of cyber character's fashion in the on-line game from the point of the contemporary fashion design. The research method is to understand the general concept of the cyber-space and characters and then is to contemplate characteristics and formative features of game character's fashion of the cyber-space mainly with cyber characters that were closely linked with features of the contemporary fashion design. As a result, the formative feature of game character's fashion of the cyber-space was to be classified into four categories; reactionism, mechanism, futurism, sensualism. First, reactionism takes traditional elements with symbolical and compromising form. Second, mechanism has a tendency of deconstruction due to its vitality and sense of velocity for objects through employing geometrical forms and new materials. Third, futurism deviates from the established framework. It makes use of high-tech materials and has surrealistic and futuristic features. Fourth, sensualism does emphasize sensual parts of the body and intends to convey aesthetic atmosphere through association of ideas. Character's fashion of the cyber on-line game is unnatural and artificial in its forms and wear for the lack of knowledge for costume's structure, and it shows just simplified design that accept extremely partial fragment of features in the contemporary fashion design.

A planetary lensing feature in caustic-crossing high-magnification microlensing events

  • Chung, Sun-Ju;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.109.2-109.2
    • /
    • 2012
  • Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions.

  • PDF

Optimal feature extraction for normally distributed multicall data (가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF