• 제목/요약/키워드: feature reconstruction

검색결과 218건 처리시간 0.024초

Improved Residual Network for Single Image Super Resolution

  • Xu, Yinxiang;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.102-105
    • /
    • 2019
  • In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the training for deeper network. And we use the global residual learning to make network training easier. The experimental results show that the proposed method gets better performance than classic reconstruction methods.

  • PDF

계층별 양자화 기반 초해상화 다중 스케일 잔차 네트워크 압축 (A Model Compression for Super Resolution Multi Scale Residual Networks based on a Layer-wise Quantization)

  • 황지원;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.540-543
    • /
    • 2020
  • 기존의 초해상도 딥러닝 기법은 모델의 깊이가 깊어지면서, 좋은 성능을 내지만 점점 더 복잡해지고 있고, 실제로 사용하는데 있어 많은 시간을 요구한다. 이를 해결하기 위해, 우리는 딥러닝 모델의 가중치를 양자화 하여 추론시간을 줄이고자 한다. 초해상도 모델은 feature extraction, non-linear mapping, reconstruction 세 부분으로 나누어져 있으며, 레이어 사이에 많은 skip-connection 이 존재하는 특징이 있다. 따라서 양자화 시 최종 성능 하락에 미치는 영향력이 레이어 별로 다르며, 이를 감안하여 강화학습으로 레이어 별 최적 bit 를 찾아 성능 하락을 최소화한다. 본 논문에서는 Skip-connection 이 많이 존재하는 MSRN 을 사용하였으며, 결과에서 feature extraction, reconstruction 부분과 블록 내 특정 위치의 레이어가 항상 높은 bit 를 가짐을 알 수 있다. 기존에 영상 분류에 한정되어 사용되었던 혼합 bit 양자화를 사용하여 초해상도 딥러닝 기법의 모델 사이즈를 줄인 최초의 논문이며, 제안 방법은 모바일 등 제한된 환경에 적용 가능할 것으로 생각된다.

  • PDF

3D Building Detection and Reconstruction from Aerial Images Using Perceptual Organization and Fast Graph Search

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.436-443
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract useful building location information from the generated disparity map to segment the interested objects and consequently reduce unnecessary line segments extracted in the low level feature extraction step. Hypothesis selection is carried out by using an undirected graph, in which close cycles represent complete rooftops hypotheses. We test the proposed method with the synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the reconstructed buildings have an average error of 1.69m and our method can be efficiently used for the task of building detection and reconstruction from aerial images.

3D Building Reconstruction Using a New Perceptual Grouping Technique

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • 전기전자학회논문지
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the useful building location information from the generated disparity map to obtain the segmentation of interested objects and thus reduce significantly unnecessary line segment extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected graph in which close cycles represent complete rooftops hypotheses, and hypothesis are finally tested to contruct building model. We test the proposed method with synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the buildings can be efficiently used for the task of building detection and reconstruction from aerial images.

  • PDF

Reconstruction algorithm for archaeological fragments using slope features

  • Rasheed, Nada A.;Nordin, Md Jan
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.420-432
    • /
    • 2020
  • The reconstruction of archaeological fragments in 3D geometry is an important problem in pattern recognition and computer vision. Therefore, we implement an algorithm with the help of a 3D model to perform reconstruction from the real datasets using the slope features. This approach avoids the problem of gaps created through the loss of parts of the artifacts. Therefore, the aim of this study is to assemble the object without previous knowledge about the form of the original object. We utilize the edges of the fragments as an important feature in reconstructing the objects and apply multiple procedures to extract the 3D edge points. In order to assign the positions of the unknown parts that are supposed to match, the contour must be divided into four parts. Furthermore, to classify the fragments under reconstruction, we apply a backpropagation neural network. We test the algorithm on several models of ceramic fragments. It achieves highly accurate results in reconstructing the objects into their original forms, in spite of absent pieces.

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

A reliable quasi-dense corresponding points for structure from motion

  • Oh, Jangseok;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Seo, Kap-Ho;Kim, Hochul;Kim, Mingi;Lee, Onseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3782-3796
    • /
    • 2020
  • A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.

영상 재구성방법을 이용한 염색체 영상의 패턴 분류 (Pattern Classification of Chromosome Images using the Image Reconstruction Method)

  • 김충석;남재현;장용훈
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.839-844
    • /
    • 2003
  • 본 연구에서는 염색체의 영상패턴을 인식하고 분류하는 방법을 개선하기 위해 패턴인식의 특징정보로 사용되는 비선형적인 염색체 영상을 선형적으로 재구성하는 영상 재구성 알고리즘을 사용하여 선형화된 특징정보를 추출하여 패턴분류기인 신경회로망의 입력정보로 사용한다. 중앙축 변환방법과, 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상의 특징정보를 추출하였다. 중앙축 변환방법에 의하여 추출된 특징정보의 패턴조합과 영상 재구성방법에 의하여 추출된 특징정보의 패턴조합을 구성하였으며, 10명에 대하여 추출한 특징정보를 계층적인 신경회로망(Hierarchical Multilayer Neural Network : HMNN)의 학습입력으로 사용하여 염색체를 분류하기 위한 패턴인식기를 구현하였다. 그리고 나머지 10명에 대하여 학습입력과 동일하게 조합된 패턴조합을 HMNN의 분류입력으로 사용하여 수행한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 패턴인식기를 구현할 수 있었다.

설계이력 정보를 이용한 CAD모델의 오류 수정 (Healing of CAD Model Errors Using Design History)

  • 양정삼;한순흥
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.262-273
    • /
    • 2005
  • For CAD data users, few things are as frustrating as receiving CAD data that is unusable due to poor data quality. Users waste time trying to get better data, fixing the data, or even rebuilding the data from scratch from paper drawings or other sources. Most related works and commercial tools handle the boundary representation (B-Rep) shape of CAD models. However, we propose a design history?based approach for healing CAD model errors. Because the design history, which covers the features, the history tree, the parameterization data and constraints, reflects the design intent, CAD model errors can be healed by an interdependency analysis of the feature commands or of the parametric data of each feature command, and by the reconstruction of these feature commands through the rule-based reasoning of an expert system. Unlike other B Rep correction methods, our method automatically heals parametric feature models without translating them to a B-Rep shape, and it also preserves engineering information.